

THE MACHINE LANGUAGE BOOK FOR THE COMMODORE 64

By: Lothar Englisch

Second Printing, October 1984 Printed in U.S.A. Translated by Greg Dykema Copyright (C)1983 Data Becker GmbH Merowingerstr. 30 4000 Dusseldorf W. Germany Copyright (C)1984 Abacus Software P.O. Box 7211 Grand Rapids, MI 49510

This book is copyrighted. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photycopying, recording, or otherwise, without the prior permission of Data Becker, GmbH or ABACUS Software, Inc.

ISBN 0-916439-02-X

PREFACE

Programming in machine and assembly language is one of those things that everyone would like to be able to do. Machine language is extremely fast and versatile. Many people try to learn it, but most quickly give it up because it is too complicated. Only a few actually use it.

With this book we want to make it possible for thousands of Commodore 64 users to use machine language. We have enlisted the services of Lothar Englisch as author for this purpose. Not only has he worked on many of our other books, but he is also well acquainted with the Commodore operating systems and programming for all models of the Commodore computers in both machine language and assembler.

To get the most out of machine language programming, you must concentrate on the following chapters. We think that you will be rewarded in the end.

Have fun with this book and much success with your own machine language programs.

Table of Contents

1.	Introduction1
2.	The 6510 Microprocessor8
3.	Instructions and Addressing Modes of the 651017A. The Load instructions18B. The Store instructions30C. The Transfer instructions32D. The Arithmetic instructions35E. The Logical instructions42F. The Compare instructions49G. The Jump instructions60I. The Increment and Decrement instructions62J. The Shift instructions68L. The Subroutine instructions73M. The Stack instructions79
4.	Entering Machine Language Programs
5.	The Assembler
6.	A Single-Step Simulator for the 6510115
7.	Machine Language Programs on the Commodore 64139
8.	Extending BASIC173
9.	Input and Output Routines184
10.	BASIC Loader Programs192
11.	6510 Disassembler194
12.	Using a Machine Language Monitor
App	endix A. Addressing Modes and Operation codes208
App	endix B. Groups of Instructions
App	endix C. Conversion Tables Decimal - Hex - Binary210
App	endix D. Table of 6510 Instruction Codes
App	endix E. Operation codes and Flag Settings
App	endix F. Ordering Instructions for Optional Program Diskette216

1. INTRODUCTION

Why use machine language? -- Advantages and disadvantages of programming in machine language

Today, when you purchase a home or personal computer such as the Commodore 64, you have the BASIC programming language available as soon as you turn your computer on. With BASIC you can perform almost all of the tasks needed in home computing. It is easy to learn to program in BASIC. Why then, should you bother with machine language? Isn't it just a relic from the Dark Ages of computing?

Let's compare BASIC to machine language.

Most of us have mastered BASIC and know that it's not very difficult to learn. In this book we'll try to convince you that programming in machine language is almost as easy to learn. If you already know BASIC, then you have a headstart. The fundamentals of programming in machine language are not much different.

What advantages over BASIC justify that you learn a new programming language?

Your Commodore 64 comes with the BASIC programming language built-in. BASIC is an acronym for <u>Beginner's All</u> Purpose

<u>Symbolic Instruction Code and despite its ease of mastery,</u> it is quite capable of performing most home computing tasks. BASIC is a high level programming languages like FORTRAN, Pascal, and COBOL. These languages are often called problemoriented languages because they are intended to be used for solving problems in various fields such as mathematics, science or business. The counterpart of problem-oriented languages are the machine-oriented languages such as FORTH, and require a more detailed knowledge of the computer hardware. Machine language is the extreme member of this category of languages.

By itself, the Commodore 64 cannot understand BASIC at all. How can it execute the BASIC commands that you type in at the keyboard if it doesn't speak BASIC? The Commodore 64 contains an "operating system" which includes a BASIC interpreter. This interpreter converses with you in BASIC. The Commodore 64 converts the BASIC commands and statements into a series of executable machine language instructions. You don't even see this happening. It takes place "automatically".

Let's take a look at a simple example of how the BASIC interpreter works:

PRINT "HELLO"

When you enter this statement and press <RETURN>, the interpreter reads the line character by character.

One of the jobs of the interpreter is to recognize the commands (also called keywords) that make up the BASIC language. When it finds the first word in the line (PRINT), the interpreter looks in its **command table** to determine if the word is a BASIC keyword. The command table contains all of the BASIC keywords: GOTO, FOR, INPUT, PRINT, etc. Associated with each BASIC keyword is the location of the routine in the Commodore 64 operating system which performs the actions required by that BASIC keyword. Below is a simplified example of the command table:

BASIC	MEMORY LOCATION WHICH
KEYWORD	PERFORMS REQUIRED ACTIONS
GOTO	43168
IF	43304
INPUT	43967
•	•
•	•
PRINT	43680
•	•

If the interpreter finds the keyword in the command table, it knows what part of the operating system is to carry out that BASIC command. In our example, the interpreter searches the command table for the word **PRINT**. It finds the keyword and notes that the memory location which performs the PRINT statement begins at location 43680. Therefore, the interpreter lets the "program" segment (usually called a **routine** or machine-language routine) located at 43680 perform the PRINT command.

The routine at 43680 continues to read more of that same line - also character by character. Next it finds a quotation mark which tells PRINT routine that text follows. According the the rules of BASIC, the Commodore 64 echos onto the screen each of the next characters up to the ending quotation mark. So the word HELLO appears on the screen. If no additional characters appear on the line following the ending quotation mark, the routine knows that its job is complete and responds with READY. The BASIC interpreter is now ready for another command.

This may appear very complicated and you may be telling yourself that there must be an easier way. But this is exactly the purpose of the BASIC interpreter -- to insulate you from the drudgery and hard work of machine language. Why then learn machine language?

Machine language is considerably faster than BASIC.

What speed advantages does machine language have over BASIC and what accounts for this advantage? In order for your computer understand BASIC, is has a BASIC interpreter which recognizes and executes individual BASIC commands. The interpreter itself is written in machine language.

To perform a simple BASIC command, the interpreter must do several things. A simple BASIC statement is POKE 1024,10.

The interpreter searches for the first word in the statement; it finds the keyword POKE in its command table; it knows to expect two arguments; it finds the first argument 1024 and converts it to binary (remember that the computer works in binary); it finds the second argument 10 and converts it to binary; it writes this second value into the location specified by the first argument. This statement takes about two milliseconds or 2 thousandths of a second to perform.

How can you do the same task in machine language? You can peform the same thing with two instructions:

LDA #10 STA 1024

These two instructions take six microseconds or 6 millionths of a second. This is less than 1/300th the time as BASIC.

A machine language program is from 10 to 1000 times faster than an equivalent program written in BASIC.

Some tasks such as sorting or calculating mathematical formula are very time-consuming. If there are large amount of data, these tasks may easily take hours to complete using the BASIC language. Substituting a fast machine language program would be welcome in such a situation.

Some tasks cannot be performed using BASIC. An example is attending to the "interrupts" that temporarily require the Commodore 64 to stop what it's doing to see if the RUN/STOP key is pressed. Servicing interrupts must be done by a machine language routine.

This means that you cannot utilize the full capabilities of the Commodore 64 without machine language. This is especially true for high resolution graphics and the music synthesizer on the Commodore 64.

Another important point about machine language programming is its use of memory. A well-written machine language program may be ten times smaller than an equivalent BASIC program. A 1K program written in BASIC is not very large; but a 1K program written in machine language is large.

The same holds true for data storage. You can create and maintain compact data structures in machine language that are not possible in BASIC. For example, BASIC requires two bytes to represent integer values between 0 and 255. In machine language, you can represent integer values between 0 and 255 in one byte for each variable. Thus one-half of the storage space for such values is wasted using BASIC. Machine language lets you choose the most optimal data structure for each problem.

To be fair, there are disadvantages to using machine

language. First, you must learn how to program in machine language. If you have already mastered BASIC, then you have the fundamentals under your belt. But you also need some tools that let you easily write and work with machine language programs. This book contains the listings for several such tools.

Another disadvantage of machine language is that these programs can run only on the model computers for which they are written, and require substantial changes to run on a different model. Most BASIC programs are more easily transportable to other computers.

Testing machine language programs is another difficulty unless you have the appropriate tools. We have included the listing for a 6510 simulator program that not only teaches you the machine language instructions but helps you find errors in your programs.

Although machine language programming has some drawbacks, many tasks cannot be solved without machine language and many others require you to get the last bit of performance from your computer.

After you have written your first machine language program, you'll see that it isn't so difficult. We hope that you find the lessons of this book helpful and that they inspire you to solve your own computing problems in machine language.

2. The 6510 Microprocessor

Before you begin programming in machine language, you need to become acquainted with the processor itself. Let's clarify some terms first. We'll begin with the construction of the processor.

The 6510 microprocessor belongs to the family of $65\lambda X$ processors that are found in most Commodore computers. The 6510 processor contains a set of registers which are used by all operations.

How can we describe the registers?

A microprocessor works digitally. It can only distinguish between two conditions. We can think of these two conditions like a switch which can be either on and off (or 1 and 0). A single switch can have only two states. By itself a switch is not very useful, so multiple switches are combined into registers.

A single switch in the processor is called a bit (from <u>binary digit</u>). A group of eight bits is called a byte. The registers of the 6510 processor contains a group of eight bits (or one byte) is arranged like this:

 bit number
 7
 6
 5
 4
 3
 2
 1
 0
 (power of 2)
 contents
 0
 1
 1
 0
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 1
 0
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

FIG 2.1

The upper row illustrates the bit numbering convention that is commonly used throughout this book. The bits are numbered from zero to seven. Beneath each bit number are the contents of the bits; either a 0 or a 1. While a bit can represent two conditions (and therefore only two values), you can represent a larger range with 8 bits.

Here's the numbering system that you are most familiar with - the decimal system.

decimal position 3 2 1 0 (power of 10) contents 5 7 2 4 FIG 2.2

These positions are also numbered, this time from zero to three.

How do you calculate the value of this number? Each digit has a value between zero and nine and the next position has a value ten times greater. Starting from the rightmost decimal position:

	4*10 ⁰	+	2*10 ¹	+	7*10 ²	+	5*10 ³
=	4	+	2*10	+	7*10*10	+	5*10*10*10
=	4	+	2* 10	+	7*100	+	5*1000
=	4	+	20	+	700	+	5000
				=	5724		

Likewise, you can determine the contents of the registers using the binary number system. They are called binary numbers because each position allows two values instead of ten. Accordingly, the next highest position is not ten times greater, but only twice the previous value. So you can calculate the contents of the register:

 $1*2^{0} + 0*2^{1} + 0*2^{2} + 1*2^{3} + 0*2^{4} + 1*2^{5} + 1*2^{6} + 0*2^{7}$ = 1*1 + 0*2 + 0*4 + 1*8 + 0*16 + 1*32 + 1*64 + 0*128 = 1 + 0 + 0 + 8 + 0 + 32 + 64 + 0 = 105

Thus the contents of the register in FIG 2.1 is 105. These troublesome calculations can be simplified, if you first calculate the value of each bit position. This is analagous to memorizing the decimal positions.

A l in this	Is equivalent
bit position	to this decimal value
posición	
0	$2^0 = 1$
1	$2^1 = 2$ ·
2	$2^2 = 4$
3	2 ³ = 8
4	$2^4 = 16$
5	2 ⁵ = 32
6	$2^{6} = 64$
7	$2^7 = 128$

What is the maximum value of the register? If all of the bit positions of the register have the value one, their sum yields 1 + 2 + 4 + 8 + 16 + 32 + 64 + 128 = 255. The greatest value that can be represented in eight bits is 255. So a total of 256 (0 thru 255) different values can be represented in a register.

But binary numbers are tedious to manipulate. For this reason, an alternative representation is introduced. It requires fewer digits and is therefore more convenient to use. If you divide an 8-bit binary number into two 4-bit binary numbers, each 4-bit number can represent 16 different values. If you construct a number system with 16 different digits, then you can express each 8-bit binary number with just two digits.

bit position	7	65	4	3	21	0
binary contents	0	1 1	0	1	0 0	1
hexadecimal contents		6			9٠	

FIG 2.3

The hexadecimal (base 16) numbering system uses 16 different digits for this purpose. Each byte is divided into two halfbytes, called nybbles. A nybble can have values from 0 to 15, but the decimal number system only has digits from 0 to 9. In the hexadecimal number system, the digits from 10 thru 15 are represented by the letters A thru F. The hexadecimal digits are arranged like this:

This Binary	Is equivalent to this	And has this decimal
Nybble	Hex digit	value
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	8
1001	9	9
1010	А	10
1011	В	11
1100	с	12
1101	D	13
1110	Е	14
1111	F	15

For the example in FIG 2.3, the contents of the register have a hexadecimal value 69. In order to distinguish between the various number systems, you denote a hexadecimal number with a preceding dollar sign \$, and a binary number with a preceding percent sign **%**.

Appendix C is a Decimal, Hexadecimal, Binary conversion table. The remainder of this book uses hexadecimal numbers most often, since it is easily representable and convertable into the binary representation of the processor.

Now let's take a look at the microprocessor registers.

The 6510 has a total of six registers, five are eight-bit registers and the sixth is a sixteen-bit register. Let's

examine the registers individually.

The accumulator is the most important register in the microprocessor. It is the universal working register, used for almost all operations. All arithmetic and logical operations, and almost all of the comparison instructions use the accumulator.

The **X-register** is the second register in the processor. This register is used together with the accumulator when working with tables. It functions as the counter or pointer to the individual table elements. For this reason this register is also called an index register.

The **Y-register** is an index register like the X-register and serves similar purposes.

The program counter is a 16-bit register. Its contents indicate the memory location from which the next instruction is to be executed. This register is managed by the microprocessor itself. Normally, you do not have direct control over the contents of this register.

The **stack pointer** points to an area of memory called the stack which is used for subroutines and for short-term data storage. The stack is described in detail later.

The processor status register gives information about the

result of the last executed instruction. This register is the foundation for the decision making and conditional branching instructions. Seven of the eight bits of the status register are used as **flags**. You can examine and conditionally branch depending on the setting of a particular flag. A flag can be either **set** (=1) or **clear** (=0). The processor status register is made of the following flags:

bit position	7	6	5	4	3	2	1	0
flag type	Ν	v	-	в	D	Ι	Z	С

The letters are abbreviations for the names of the flags, and have the following meanings:

- C Carry The carry flag contains the carry generated by an addition, and is set if the result is greater than 255 and therefore cannot be contained in eight bits of the accumulator.
- Z Zero The zero flag is set if the result of an operation is zero.
- I Interrupt Disable This flag determines if interrupts are permitted in a program. This flag does not interest us at the moment.

- D Decimal The decimal flag determines if arithmetic is carried out in the decimal mode.
- B Break The break flag indicates if execution was halted by a BRK instruction.
- V oVerflow The V flag indicates overflow when calculating with signed numbers.
- N Negative This flag is set if the result of an operation results in a value greater than 127 (bit 7 is set). The designation negative comes from the fact that values over \$7F can be interpreted as negative numbers.

A microprocessor must have a place to get data and store data. The computer's memory serves this purpose. Memory is divided into individual cells containing 8 bits each, the same size as the accumulator and X and Y registers. In order to access the memory, it must be possible to select a specific memory location. This selection is called **addressing** memory. We give each memory location a number or **address.** With 8 bits, the microprocessor can address cells from 0 to 255 for a total of 256 memory cells. This is far too few for most applications. For this reason, the microprocessor uses 16-bits for the address. With 16 bits, the microprocessor can address $2^{16} = 65536$ memory locations.

This is called a 16-bit address bus. To summarize - a) the 6510 microprocessor can address 65536 memory locations; b) each memory location can contain a value from 0 to 255. For ease of handling, 2^{10} = 1024 bytes is called a kilobyte or 1K. Therefore, the processor can address 64*1024 = 65536 or 64K. This is the entire address range of the Commodore 64.

Now you can understand the significance of the program counter. The program counter contains a 16-bit value. This 16-bit value is the address of the next instruction that the microprocessor is to fetch from memory and execute.

An instruction for the microprocessor can be represented by a value between 0 and 255. The 6510 microprocessor can have a maximum of 256 different instructions. However, not all the codes have a meaning on the 6510; fewer than 256 instructions exist. BASIC commands are naturally not included.

3. Instructions and Addressing Modes of the 6510

Of the 256 possible 8-bit codes, 151 are legal instructions for the 6510. These include several similar instructions, that are different only by addressing mode. There are only 56 entirely different instructions on the 6510. These instructions are easy to learn. They are introduced to you in groups.

An instruction is represented in the computer as an 8-bit binary number. Each particular machine language instruction has a specific binary value. The microprocessor knows what actions to take based on this binary value.

Machine language instructions are given mnemonic names. A mnemonic is a three character abbreviation for a machine language operation. For example, the mnemonic LDA stands for <u>LoaD</u> <u>A</u>ccumulator. These mnemonics will become more familiar to you as we discuss them throughout the book.

Now let's take a look at the specific instructions:

A. The LOAD instructions

The LOAD instructions get data from memory and place it into a register. There are three working registers in the processor (the accumulator, the X-register and the Yregister). Each has a corresponding load instructions.

LDA LoaD Accumulator LDX LoaD X register LDY LoaD Y register

The 6510 processor has different addressing modes. An addressing mode tells the 6510 how to calculate the address (or location) of the operand.

In the examples that follow, we show you corresponding "pseudo-BASIC" statements to illustrate the machine langauge instructions in a familiar notation.

1) Immediate Addressing

LDA #10

This addressing mode is indicated by the pound sign # preceding the value to be loaded. Immediate addressing means that the accumulator is loaded with the value which follows it, in this case 10. The corresponding pseudo-BASIC instruction is:

A=10

This addressing mode is used to load a register with a constant. It also works with the X and Y registers:

LDX #\$7F or LDY #0

Here the X-register is loaded with the value \$7F (127 in decimal) and the Y-register with the value zero (0).

When using the immediate addressing mode, the value to be loaded is part of the program. The instruction and the value are placed one after the other in two adjacent memory locations. For example, if the machine language program is located at address 1200, the program counter contains the value 1200. The 6510 microprocessor gets the intruction at 1200 and sees that its value is \$A9 or decimal 169. It knows that the instruction is LDA #. So it places the contents contained in the next memory location 1201 into the accumulator (see diagram which follows). Since this instruction consists of two bytes - the instruction itself and the value to be loaded - the processor automatically increments the program counter by two. The program counter then points to the next instruction to be executed by the microprocessor

starting at 1202.

	1	!	1		
contents>	! A9	!data	L I -		
	1	1	1		
address>	1200	1201	1202		

2) Absolute Addressing

This addressing mode is used if a register is be loaded with the contents of a particular memory location. This is different from the immediate addressing mode which loads the register with a constant value.

LDA \$COAF

Here the accumulator is loaded with the contents of memory location \$COAF. How is this instruction represented in memory? The address \$COAF is a 16bit number. A memory location can only hold 8 bits. The solution is to divide the 16-bit address into two 8-bit numbers. The following convention is used for this - immediately following the instruction is the least significant part of the address (lowbyte) and followed by the the most significant part (high-byte).

In this example, the instruction code is \$AD (173). The absolute address follows: with the low-byte first, \$AF (175) and finally the high-byte \$CO (192). After the instruction is executed, the program counter is incremented by three. The corresponding instruction in pseudo-BASIC is:

A = PEEK(\$COAF)

This instruction also works with the X and Y registers. The instruction or operation codes, abbreviated to op codes, can be found in Appendix A.

When executing absolute addressing mode instructions, the processor gets the low-byte and then the high-byte of the address. The data found at that address is placed into the accumulator, the program counter is incremented by three and the next instruction is fetched. These instructions require three bytes, in contrast to the immediate addressing mode which requires only two.

Now a quick look at the status register. Load instructions affect the zero and negative flags. If the value loaded has a value of zero, then the zero flag is set; otherwise it is cleared. If the value

loaded is negative (greater than \$7F or 127 decimal), then the negative flag is set; otherwise it is cleared.

3) Zero-page addressing

Another addressing mode is called the zero-page addressing mode. This addressing mode can be used if the address of the data is in memory locations between 0 and \$FF (255). This results in a two-byte instruction in contrast to the three-byte instruction of the absolute addressing mode. Zero-page addressing instructions occupy less memory and execute faster. A disadvantage, of course, is that the data must be located in addresses from 0 to 255.

Where did the term zero-page originate? You can think of the 64K of memory as being divided into 256 **pages**, each containing 256 bytes. Thus memory locations 0 thru 255 form page zero.

```
A zero-page load instruction looks like this:
LDA $73
```


It is stored as a two-byte instruction: \$A5 (165) \$73 (115). In pseudo-BASIC, this is:

A = PEEK(\$73)

4) Indexed Addressing

Another addressing mode is the indexed addressing mode. Here the X and Y registers play important roles.

LDA \$25B8,X

This is called absolute addressing indexed by X. How does it work? The processor loads the accumulator not with the contents of memory location \$25B8. Rather it first adds the value of the X-register to the absolute address (\$25B8). If the X-register contains \$35, for example, the following calculation takes place:

\$25B8 + \$35 = \$25ED

The accumulator is loaded with the contents of location \$25ED. If this instruction is executed with varying X-values, a different value is loaded each time. This addressing mode is very useful for programming loops and when working with tables. Other examples are described later. In pseudo-BASIC, this addressing mode can be formulated as follows:

$$A = PEEK(\$25B8 + X)$$

Here X implies the contents of the X register.

	!	!	1	1
contents>	! BD	! B8	! 25	!
	1	!	!	1
address>	1200	1201	1202	1203

You can also use the Y-register in place of the Xregister for indexed addressing.

```
LDA $25B8,Y
```

Here the contents of the Y-register is added to the absolute address \$25B8 to obtain the final address. Using both registers, you have two independent index variables which can be used for programming nested loops.

5) Zero-page indexed addressing

Indexed addressing can also be used together with zero-page addressing, thereby carrying over the advantages of zero-page addressing to indexed addressing. Note that this addressing mode works with the X-register only. A typical instruction might look like this:

LDA \$BA,X

This results in a two-byte instruction.

	1	1	1
contents>	! B5	! BA	1
	!	1	1
	1000		
address>	1200	1201	1202

6) Indirect Indexed Addressing

This addressing mode is not as easy to understand, but permits very flexible programming -the indirect indexed addressing mode. Using this addressing mode, zero page plays an important role. With indirect indexed addressing, two consecutive memory locations in zero-page form a pointer to the actual address. The first memory cell contains the lowbyte and the next contains the high-byte of the

actual address. An example clarifies this.

Imagine that zero-page address \$70 contains the value \$20, and address \$71 contains the value \$C8. These two memory locations form a pointer to the address \$C820. Next the Y-register also comes into play in the indexing. If the Y-register contains \$B3 for example, it is added to \$C820 to get an effective address of \$C8D3 as shown below:

LDA	(\$70),¥	(\$70)	=>	\$20	contents of \$70
		(\$71)	=>	\$C8	contents of \$71
				\$C820	yields this address
		(Y)	=>	\$B3	contents of Y reg.
				\$C8D3	sum of addr and Y reg.
		(\$C8D3)	=>	\$4F	contents at \$C8D3

After the instruction is executed, the the accumulator contains \$4F.

	1	1	1			
contents>	! Bl	! 70	1			
	!	1	1			
address>	1200	1201	1202			

In pseudo-BASIC it looks like:

A = PEEK (PEEK(\$70) + 256 * PEEK(\$71) + Y)

Indirect indexed addressing is indicated by placing the operand in parentheses. This addressing mode is very efficient, because you can access the entire memory with a two-byte instruction. This mode is used for managing tables and loops. It is more flexible than the simple indexed addressing, because the entire memory range can be addressed, not just the memory in a single page. Only the contents of the two-byte pointer in the zero page need be changed.

7) Indexed Indirect Addressing

Another addressing mode is the indexed indirect address mode, in contrast to the above indirect indexed addressing mode. It works with the Xregister instead of the Y-register. Here also the address is formed from two consecutive zero-page locations. When calculating the address, the index is first added to the pointer and then the contents are used as a pointer to the actual address. An example:

LDA (\$70, X) (X) => \$08 contents of X register added to zero-page addr \$70 => **\$78** contents of \$78 contents of \$20 (\$78)=> \$40 => (\$79) => \$20 \$2040 yields this address (\$2040) => \$A9 contents at \$2040

The accumulator contains \$A9 after the instruction is executed.

.

In pseudo-BASIC it looks like this:

A = PEEK (PEEK(\$70 + X) + 256*PEEK(\$70 + X + 1))

First the contents of the X-register is added to the operand and the contents of the resulting address is used a pointer to the actual address. The indexed indirect address mode is seldom used in contrast to the indirect indexed mode. You will probably have little occasion to use this mode at the beginning.

Here is a summary of the addressing modes and operation codes:

Address mode	LDA	LDX	LDY		
immediate absolute zero page absolute X-indexed absolute Y-indexed zero-page X-indexed zero-page Y-indexed	\$A9 \$AD \$A5 \$BD \$B9 \$B5	\$A2 \$AE \$A6 - \$BE - \$B6	\$A0 \$AC \$A4 \$BC - \$B4	operation	codes
indirect indexed	\$B1	эво —	_		
indexed indirect	\$A1	-	-		

The relative addressing mode and the accumulator addressing mode are discussed later.

1

1. 2. 1

· · · ·

B. The STORE Instructions

The counterparts of the load instructions are the store instructions. Using these instructions we can place the contents of a register into memory. The mnemonics for the instructions are:

The contents of the accumulator, X-register or Y-register are placed in the appropriate memory location, which is specified by the operand that follows the instruction code. The same addressing modes used for the load instructions apply to these instructions except for the immediate mode. Storing the contents of a register changes neither the register nor the status flags.

Here are the operation codes and addressing modes:

Address mode	STA	STX	STY	
absolute	\$8D	\$8E	\$8C	operation codes
zero page	\$85.	\$86	\$84	
absolute X-indexed	\$9D	-	-	
absolute Y-indexed	\$99	-	-	
zero-page X-indexed	\$95		\$94	
zero-page Y-indexed	-	\$96	-	
indirect indexed	\$91	-	-	
indexed indirect	\$81	-	-	

You should already be acquainted with the BASIC command corresponding to the store instructions: the POKE command. It writes the contents of a variable to a

specified address in memory. In pseudo-BASIC, the equivalents might look like this:

STA	\$8000	POKE	\$80A
STX STY	\$C020,Y		\$C020+Y,X \$F1,Y
OII	9LT	FORE	9LT1L

Store instructions are either two or three bytes in length depending on the addressing mode used. The address modes are the same as for the load instructions. The flags are not affected by store instructions.

With the load and store instructions, you are now acquainted with two important groups of instructions which serve to communicate between the microprocessor and the memory.

C. The Transfer Instructions

The 6510 microprocessor has instructions to copy the contents of one register to another. You can, for example, transfer the contents of the X-register into the accumulator or vice versa. This is quite important because many instructions only work with the accumulator. After executing these instructions, the contents of the source register are unchanged; the value is merely copied into the destination register. The transfer instructions within the processor require the participation of the accumulator; a direct transfer from the X to Y register or vice versa is not possible.

All transfer instructions are one-byte instructions; they need no operand.

Below are the individual transfer instructions and the pseudo-BASIC commands.

TAX X = A

The contents of the accumulator is copied into the X register. The Z and N flags are affected, but the original contents of the accumulator remain unchanged.

TXA
$$A = X$$

The contents of the X-register is copied into the accumulator. The N and Z flags are affected. The contents of the X-register are unchanged.

These are the corresponding instructions for the Yregister. They work exactly like the above instructions, but substituting the Y-register for the X register.

The next two transfer instructions affect the stack pointer. They are seldom used, although the stack pointer is discussed later. The stack pointer can be exchanged only with the X-register.

The contents of the stack pointer is placed into the Xregister. The Z and N flags are set according to the value. The contents of the stack pointer remain unaltered by this operation.

The contents of the X-register are placed into the stack pointer. No flags are affected by this instruction. The contents of the X-register are unaltered.

The Machine Language Book of the Commodore 64

All the transfer instructions are contained in this table, along with their instruction codes.

Command	Op code
TAX	\$AA
TXA	\$8A
TAY	\$A8
TYA	\$98
TSX	\$BA
TXS	\$9A

D. The Arithmetic Instructions

As with most 8-bit microprocessors, the 6510 can perform only two arithmetic operations - addition and subtraction. Multiplication and division must be implemented by the user. Each calculation requires two operands which are combined to produce a result. For the 6510, the first operand is contained in the accumulator and the second operand is obtained from memory. The various addressing modes are used for this. The result of the arithmetic operation is always left in the accumulator. The comparisons with the corresponding pseudo-BASIC commands makes this clearer.

First consider addition. The contents of the addressed memory location are added to the accumulator and the result is again placed back in the accumulator.

ADC #\$3A A = A + \$3A

If you add two 8-bit values (0 to 255), the result may not be able to be represented by an 8-bit number. An overflow may occur. Let's take a look at the binary addition:

ADC #\$3A; the accumulator contains \$9E.

\$9E = %10011110
\$3A = %00111010

The addition looks like this:

10011110 + 00111010	\$9E +\$3A		
10111000	= \$D8	•* • •	

Binary addition is carried out in the same manner as decimal addition. Four different results are possible in binary addition:

0 + 0 = 0 0 + 1 = 1 1 + 0 = 1 1 + 1 = 0 plus overflow

A carry, as in decimal addition, is taken into account in the next position. In our example, we get %10111000 or \$D8 as the answer. The result can be represented in eight bits. Here is another example:

ADC #\$3A

The accumulator now contains \$E4. The addition looks like this:

	11100100		\$E4
+	00111010		+\$3A
	100011110	=	\$11E

Here the result overflows 8 bits; the answer is \$100011110 or \$11E. But the accumulator holds only an 8-

The Machine Language Book of the Commodore 64

bit number. So the carry flag is used to indicate an overflow. After each addition, overflow is indicated by the carry flag. If an overflow occurs, the carry flag is set (to 1); if no overflow occurs, the carry flag is cleared (to 0).

You can think of the carry flag as the ninth bit of the accumulator. If you want to add numbers which cannot be represented in 8-bits, multi- precision addition is used. A 16-bit number (two 8-bit memory locations) can represent numbers between 0 and 65535.

To add two 16-bit numbers, add the low-bytes of each operand and then the high-bytes of each operand. If an overflow occurs during the addition of the low-bytes, the carry flag adjusts for this during the addition of the high-bytes. Remember to clear the carry flag before adding the low-bytes so that the previous contents of the carry flag do not affect the addition. Here is an example of adding two numbers NUM1 and NUM2 with the result being placed in SUM:

CLC		clear carry flag;
LDA	NUM1 LOW	;low half of NUM1
ADC	NUM2 LOW	;low half of NUM2
STA	SUMLOW	;low half of result
LDA	NUM1HIGH	;high half of NUMl
ADC	NUM2HIGH	;high half of NUM2
STA	SUMHIGH	;high half of result

Now we can give the equivalent instruction in pseudo-BASIC.

```
ADC \# 3A A = A + 3A + C
```

Any overflow is indicated by the carry flag after each addition. Besides the carry flag, the zero and negative flags are also affected, depending on whether the result is zero or the seventh bit is set. An additional flag, the V flag, is used for signed arithmetic. The following table contains the operation codes for the ADC instruction in the various addressing modes.

Address mode	ADC		
immediate	\$69	operation	codes
absolute	\$6D		
zero page	\$65		
absolute x-indexed	\$7D		
absolute y-indexed	\$79		
zero-page x-indexed	\$75		
indirect indexed	\$71		
indexed indirect	\$61		

Subtraction is performed in much the same way as addition. The contents of the addressed memory location is subtracted from the accumulator and the result is left in the accumulator. It is possible that the result cannot be represented in 8-bits. With subtraction, an overflow cannot occur, only an underflow. In this case, the result is less than zero. The carry flag indicates this too. Since overflow and underflow have opposite meanings, underflow is indicated by carry flag being cleared. A

carry flag being set means that no underflow has occurred. Correspondingly, the carry flag must be set prior to subtraction (or the first byte of multiprecision subtraction). For example:

SEC		;set carry flag for subtraction
LDA	VALl	;subtrahend
SBC	VAL2	;minuend
BCC	NEGATIVE	carry clear means VAL2>VAL;
BCS	NOTNEG	;carry set means VAL2<=VAL1
	•	· · · · •

In pseudo-BASIC we can formulate this as follows:

SBC #\$3A A = A - \$3A - (1-C)

Binary subtraction is executed in a manner similar to addition. There are four possible cases:

0 - 0 = 0 0 - 1 = 1 plus underflow 1 - 0 = 11 - 1 = 0

If the accumulator contains \$7F, the binary representation looks like this:

\$7F %01111111 \$3A %00111010

After setting the carry flag, the subtraction looks like

this:

The result is \$01000101 or \$45. Since no underflow occurs, the carry flag is set again. The next example is somewhat different. This time the accumulator contains \$1E and the carry flag is set.

\$1E %00011110 \$3A %00111010

The subtraction yields the following:

The result is %11100100 or \$E4. Because an underflow occurred, the carry flag is cleared. How is this result interpreted? Consider how we do subtraction using decimal numbers. In decimal, our calculation is 30-58. The answer is a negative number, -28. In this example, the register contains \$E4 or 228 (decimal). How are these number related? If we subtract the result from 256, so we get 28. The cleared carry flag after subtraction tells us that the result must be interpreted as a negative number.

The Machine Language Book of the Commodore 64

Negative numbers are represented using two's complement notation. To find the two's complement of a number, invert all of the bits of the binary number and then add one to this result.

11100100 00011011 00000001	original number invert each bit plus l
 00011100	gives two's complement

The result is %00011100 or \$1C or 28 in decimal.

Note that the carry flag must be cleared before addition. After addition, a set carry flag indicates an overflow. The carry flag must be set before subtraction. After subtraction, a clear carry flag indicates underflow and the result is in two's complement representation.

This table contains the operation codes for the addressing modes.

Address mode	SBC	
immediate	\$E9	0
absolute	\$ED	
zero page	\$E5	
zero page absolute x-indexed	\$FD	
absolute y-indexed	\$F9	
zero-page x-indexed	\$F5	
indirect indexed	\$F1	
indexed indirect	\$E1	

operation code

E. The logical instructions

The logical instructions combine two value with each other. As with the arithmetic instructions, one operand must be in the accumulator while the second is retrieved from memory according to the addressing mode. After the operation, the result is left in the accumulator. The 6510 can perform three different types of logical operations.

The AND instruction

The AND operation compares each bit of the accumulator with the corresponding bit in the operand. If the bit of the accumulator AND the corresponding bit of the operand are both set (to 1), the corresponding bit of the result is also set to one.

0 AND 0 = 0 0 AND 1 = 0 1 AND 0 = 0 1 AND 1 = 1

The bit-wise comparison of the accumulator and operand can be made clearer with an example.

AND #\$37

Say, that the accumulator contains \$5D. ANDing the accumulator with \$37 gives the following:

\$5D 01011101 \$37 00110111 \$15 00010101

The result is %00010101 or \$15. This corresponds exactly to the pseudo-BASIC instruction AND:

A = A AND \$37

In this case, A = \$5D AND \$37 or A = 93 AND 55. We get the answer 21 or \$15. The AND operation affects the N and Z flags. A result of zero sets the Z flag, while results greater than \$7F (127) set the N flag.

This table contains the operation codes for each addressing

Address mode	AND
immediate	\$29 operation codes
absolute	\$2D
zero page	\$25
absolute x-indexed	\$3D
absolute y-indexed	\$39
zero-page x-indexed	\$35
indirect indexed	\$31
indexed indirect	\$21

The OR instruction

The OR instruction compares each bit of the accumulator with the corresponding bits of the operand. If a bit of the accumulator OR a corresponding bit of the operand equals 1, the corresponding bit of the result is set to one.

```
0 ORA 0 = 0
0 ORA 1 = 1
1 ORA 0 = 1
1 ORA 1 = 1
```

You can see from the value table that this is the "inclusive" OR. The result is one if the first operand and/or the second operand is one, not in the sense of either/or (but not both). The OR instruction affects the N and Z flags. Here's an example:

ORA #\$37

The accumulator contains \$5D. ORing the accumulator with \$37 works like this:

\$5D	01011101
\$37	00110111
\$7F	01111111

The result is %01111111 or \$7F. This corresponds exactly to the BASIC instruction OR:

A = A OR \$37

in our case, A =\$5D OR \$37 or A =93 OR 55. We get 127 or \$7F.

The table below contains the operation codes for each addressing mode.

Address mode ORA immediate \$09 operation codes absolute \$0D zero page \$05 absolute x-indexed \$1D absolute y-indexed \$19 zero-page x-indexed \$15 indirect indexed \$11 indexed indirect \$01

The Exclusive OR instruction

The operand and the accumulator are compared bit by bit. The result is set to one if either one or the other bit is one, but not both. The truth table looks like this:

0 EOR 0 = 0 0 EOR 1 = 1 1 EOR 0 = 1 1 EOR 1 = 0

45

æ

The result of the operation is one if the two bits do not equal each other. Here too the N and Z flags are affected according to the result. There is no corresponding BASIC instruction. In BASIC you have to compare all the bits individually with a loop. An example looks like this:

EOR #\$37

The accumulator contains \$5D. EORing the accumulator with \$37 gives the following:

\$5D	01011101
\$37	00110111
\$6A	01101010

The result is %01101010 or \$6A (106).

The table below contains the op codes for the different addressing modes:

Address mode	EOR
immediate	<pre>\$49 operation code</pre>
absolute	\$4D
zero page absolute x-indexed	\$45 \$5D
absolute y-indexed	\$59
zero-page x-indexed	\$55
indirect indexed	\$51
indexed indirect	\$41

The BIT instruction

A special feature of the 65XX microprocessors is the BIT instruction. This instruction does not change the contents of any registers. It affects only the flags. The contents of the accumulator are ANDed with the contents of the addressed memory location. If the final result is zero, the Z flag is set, otherwise it is cleared. Additionally, the value of the sixth bit of the addressed location is placed into the V flag and the seventh bit is put in the N flag. With this one can check these two bits of a memory location without disturbing the contents of any of the registers. Let us look at an example:

LDA #\$10 BIT \$1234

The accumulator contains \$10; address \$1234 contains \$43. The AND operation yields the following result:

\$10 %00010000 ;contents of accumulator \$43 %01000011 ;contents of memory location \$1234 AND %00000000 ;logical result of AND

The AND operation produces zero, so the Z is then set. The V flag equals the sixth bit of the operand, one, while the N flag is cleared. The result is:

Z = 1; V = 1; N = 0.

Two addressing modes can be used with the BIT instruction:

15

÷.

Address mode BIT -----zero page \$24 operation codes absolute \$2C

· · ·

F. The Compare instructions

These instructions compare the contents of a register and the contents of a memory location. These instructions alter neither the register nor the memory contents, affecting only the flags. You can determine the relationship of the two numbers by examining the flags.

The compare instructions work by logically "subtracting" the contents of the addressed memory contents from the contents of the register and setting the flags as if an actual subtration occurred. The register contents are not changed. The C, N, and Z flags are affected depending on the result of the "subraction". There are compare commands for the three work registers of the microprocessor.

The CMP instruction

This instruction compares the contents of the accumulator with the contents of the addressed memory location, by logically subtracting the contents of the operand from the accumulator. If an underflow occurs, the carry flag is cleared; otherwise it is set. If the result is zero, the Z flag is set; otherwise it is cleared. If the result is greater than \$7F (127), the N flag is set, otherwise it is cleared. Let us take a look at an example:

LDA #\$50 CMP #\$30

The accumulator contains \$50. The calculation \$50 - \$30 is then carried out, with a result of \$20. Because no underflow occurred, the carry flag is set. The zero flag is cleared because the result is not equal to zero. The N flag is cleared because the number is not greater than \$7F. We get the following result:

C = 1; Z = 0; N = 0

Now another example:

LDA #\$30 CMP #\$30

Since the accumulator now contains \$30, the logical subtraction yields zero. The carry flag is set because no underflow occurred. Since the result is zero, the zero flag is set this time. The N flag is clear because the result is not greater than \$7F.

C = 1; Z = 1; N = 0

Finally a last example:

```
LDA #$10
CMP #$30
```

In this example, the accumulator contains \$10 and the logical subtraction yields 10 - 30 = F0. The carry flag is cleared to indicate the underflow and the Z flag is cleared because the result is not zero. This time the N flag is set.

C = 0; Z = 0; N = 1

In practice, the flags indicate that the accumulator contents are:

C = 1 : >= greater than or equal to the operand Z = 1 : = equal to the operand C = 0 : < less than the operand

To determine if the accumulator is greater than the operand (not greater than or equal to), two flags must be checked:

Z = 0 and C = 1

The compare instructions alter only the flags; they are the basis for the conditional branch instructions described in the next section. Note that these flag interpretations are for comparing unsigned integers only. This table contains the operation codes for each addressing mode:

See Section 2

Address mode	CMP			1 1.	, 1
immediate absolute zero-page	\$CD \$C5	operation	codes		
absolute x-indexed absolute y-indexed zero-page x-indexed	\$DD \$D9 \$D5			a ta general da a	
indirect indexed indexed indirect	\$D1 \$C1				

The CPX instruction

The CPX instruction works the same way as the CMP instruction. Here the contents of the addressed memory location are compared not with the contents of the accumulator, but rather with the contents of the Xregister. The contents of the registers are not altered. What was said above concerning the CMP instruction applies to the CPX instruction as well. There are not as many addressing modes for the CPX instruction, however.

Address mode	СРХ
immediate	\$E0 operation codes
absolute	\$EC
zero page	\$E4

The CPY instruction

These instructions are the same as the CPX instructions except that the Y-register is used in place of the Xregister. There are only three addressing modes.

G. Conditional branching instructions

Next we introduce the instructions that allow you to make programming decisions. The foundations of these decisions are the conditions of the flags. The following four flags can be used to make decisions: the Z flag, the N flag, the C flag, and the V flag.

For each flag there are two conditional branch commands: the first branches if the flag is set, the second if the flag is clear. The operand of each conditional branch instruction specifies the location where the microprocessor is to get the next operation code should the condition tested for be true.

The 6510 microprocessor uses the relative addressing mode for conditional branch instructions. The operand is not an absolute memory address, but rather an address relative to the current contents of the program counter. This relative address is an 8-bit value. The relative address is added to the contents of the program counter and the branch is made to that computed address if the condition tested for is true.

With this 8-bit value you can represent 256 different numbers, so you can branch to any of 256 possible locations. The relative address causes a branch forward if the 8-bit value is positive and causes a branch

The Machine Language Book of the Commodore 64

backward if the 8-bit value is negative. So relative addressing can perform backward branching by allowing the use of negative operands.

Let's talk a bit about negative numbers. Using two's complement representation all numbers having bit seven set are considered to be negative:

%10000000	\$80	-128
%10000001	\$81	-127
	•••	••••
%11111110	\$FE	-2
%11111111	ŞFF	-1
\$00000000	\$00	0
%00000001	\$01	1
%00000010	\$02	2
•••	•••	
%01111110	\$7E	126
% 01111111	\$7F	127

The seventh bit determines if the number is positive or negative (also the condition of the N flag). Let's look at how we can calculate the distance for a relative branch. The calculation is based on the address of the instruction following the conditional branch instruction. An example: The branch instruction is at address \$C47A and we want to branch to \$C4BF.

\$C47A	address of branch instruction
\$C47C	address of next instruction
\$C4BF	destination address

Now we simply find the difference between destination and

the address of the instruction following the conditional branch instruction:

\$C4BF - \$C47C = \$43

The operand for our branch instruction is \$43. How do we calculate the relative address for a backward branch? Say we want to branch to the address \$C440. You can calculate the relative address as follows:

\$C440 - \$C47C = \$FFC4 with underflow

Simply use the least significant byte - \$C4 as the operand for the conditional branch instruction. You could also calculate the relative address by obtaining the positive difference and taking the two's complement of the result.

C47C - C440 = C3C

The two's complement:

%00111100 original value = \$3C %11000011 invert all bits = \$C3 + 1 add 1 %11000100 = two's complement = \$C4

Here also we get an offset of \$C4.

What advantages does relative addressing have? First of

all, the branch instructions take up only two bytes in memory. Besides the savings in memory there is a faster speed of execution. A two byte instruction is executed faster by the microprocessor. The most important advantage of relative addressing is that the branch address is relative to the point of execution. Since the branch instructions do not use absolute addresses, if you place the same program segment in a different place in memory, the program does not have to be changed--the location to the branch address does not change.

If the address to branch to were given in absolute form, it would have to be changed if the program were move to a different memory location. The disadvantage of relative addressing is the limited address range to which we can branch. Only 129 bytes forward or 126 bytes backward from the branch instruction is the maximum that can be jumped. In practice this is usually no great hindrance, though, because it is seldom that a larger distance is involved.

If you have found the address calculation of relative addressing quite complicated, you can rest at ease. We have presented this discussion only so that you understand the principle. Later, the assembler will take over this work for you; you need only give it the branch destination. The assembler will bring it to your attention if you attempt to jump beyond the permitted

distance.

Branch on zero flag

A branch when the zero flag is set results from the instruction "branch on equal," shortened to BEQ. If the branch is to be made on a cleared zero flag, the instruction is called "branch not equal," BNE.

Branch on carry flag

Here the instruction is called "branch on carry set" or BCS for branching on a set carry flag and "branch on carry clear", BCC, for a branch on carry clear flag.

Branch on negative flag

If the negative flag is set, the instruction "branch on minus," BMI, will branch; in order to jump on a clear negative flag, the instruction "branch on plus," BPL, must be used.

Branch on overflow flag

The overflow can also be used as the basis for conditional branches. The corresponding commands are "branch on oVerflow set," BVS, and "branch on oVerflow clear," BVC. Because of the secondary importance of the V flag, these commands are seldom used.

This table contains all commands for conditional branching, together with their op codes.

Command	Op code
BEQ	\$F0
BNE	\$D0
BCS	\$B0
BCC	\$90
BMI	\$30
BPL	\$10
BVS	\$70
BVC	\$50

H. The Jump instructions

In contrast to the conditional branch commands above, the unconditional jump instructions branches to an absolute address. These instructions are not dependent on any condition and is always executed. The destination address is specified in reverse sequence (low-byte followed by high-byte) as are the other absolute addresses.

JMP \$C420 direct jump to location \$C420

In addition to the absolute form of the jump instruction, there is also an indirect addressing form, a peculiarity of the jump instructions. With this instruction, the specified address is not jumped to. Instead, this address tells where to get the actual destination address. For this, two consecutive bytes are again used as a pointer, in the format low byte, high byte.

JMP (\$0302) indirect jump to destination pointed to by address \$0302

The actual address is now taken from memory locations \$0302 and \$0303. If, for example, \$40 and \$C8 are in these locations, a branch to location \$C840 will be made. This method of addressing works only with the JMP instruction. The table contains the operation codes for

both addressing modes.

The operating system of the Commodore 64 makes use of this method of addressing. There are several addresses (called vectors) located from \$300 to \$33C, that contain addresses for indirect JMPs. The operating system uses these vectors for performing frequently used routines.

I. The Increment and Decrement instructions

For effective programming of loops and counters, the 6510 has commands to increment or decrement the contents of a register or memory location by one. These increment instructions correspond, together with the conditional branching commands, to the NEXT instruction in BASIC. The STEP-1 instruction can be simulated with the decrement commands.

INX

The contents of the X register are incremented by one. The N and Z flags are set according to the result. In BASIC, this instruction can be formulated:

X = X + 1

If a value of \$FF is incremented, the overflow is not taken into account (the carry flag is not set). The contents are set to zero, and the 2 flag is set.

INY

This is the corresponding instruction to increment the Y register. It affects the flags in the same way.

The Machine Language Book of the Commodore 64

There is no instruction on the 6510 to increment or decrement the accumulator contents.

INC

This instruction increments the contents of a memory location by one. The Z and N flags are again set depending on the result. This instruction is different from the previous ones in that here the contents of a memory location is first read, then incremented by one, and then saved again (read - modify - write). The commands which you are acquainted with so far either read or wrote a memory location, but never both. The INC instruction does not alter the contents of the accumulator.

In pseudo-BASIC, we can formulate this like so:

POKE M, PEEK(M) + 1

M is the address of the memory location.

DEX

This instruction decrements the contents of the X register. When decrement from \$00 to \$FF, the carry flag is not set. The N and Z flags are set depending on the result. In psdueo-BASIC this can be written as

X = X - 1

DEY

This instruction is the analog of the previous instruction, decrementing the contents of Y instead of X. The flags are affected in the same manner.

DEC

With this instruction the contents of a memory cell can be decremented without losing the contents of the accumulator. Its operation is equivalent to that of the INC instruction.

Here again is the table of instructions and their opcodes:

Command	Op code
INX	\$E8
INY	\$C8
DEX	\$CA
DEY	\$88

Address mode	INC	DEC		
absolute zero page absolute x-indexed zero-page x-indexed	\$E6 \$FE	\$C6 \$DE	operation cod	les

J. Flag manipulation instructions

In addition to the instructions whose results affect the flags, the flags can also be directly set or cleared by the programmer. Sometimes this is necessary before performing addition and subtraction. These instructions do not require any operands. They are all one-byte in length.

The carry flag

The carry flag is set by the instruction SEC (set carry), and cleared by CLC (clear carry).

The SEC instruction must be used before each subtraction and the CLC instruction before each addition, otherwise the answer may be wrong.

The decimal flag

This flag determines whether the processor performs addition and subtraction in binary (indicated by a cleared flag, as we have already learned) or in binarycoded decimal (BCD). This is the case if the flag is set. The microprocessor then works with BCD numbers. The instruction SED (set decimal) sets the flag, CLD (clear

decimal) clears the flag.

The interrupt flag

The I flag determines whether the processor is ready to accept an interrupt or not. If the I flag is set with SEI (set interrupt disable), no interrupts will be accepted, while if it is cleared with CLI (clear interrupt disable), the processor can accept interrupts.

The overflow flag

The V flag can only be cleared on instruction. The instruction CLV (clear oVerflow) serves this purpose.

This table contains the operation codes for these onebyte commands.

Command	Op code
CLC	\$18
SEC	\$38
CLD	\$D8
SED	\$F8
CLI	\$58
SEI	\$78
CLV	\$B8

K. The Shift Instructions

The 6510 microprocessor has some instructions for which there are no equivalents in BASIC: the shift instructions. These instructions shift the bits in the accumulator or addressed memory location one position to the right or left. If these instructions are used in reference to the accumulator, one speaks of accumulator addressing. Depending on the addressing mode, these commands can consist of one, two, or three bytes. If a memory location is addressed, they behave as an INC or DEC instruction by following a read with a write. The contents of the accumulator remain unchanged by this addressing mode.

ASL

ASL stands for "arithmetic shift left." It shifts the of the addressed byte by one bit-position to the left. A zero is placed in the right-most bit (bit 0) and the carry flag is set equal to the left-most bit (bit 7). Let us look at an example using the accumulator.

ASL A The accumulator contains \$47 \$47 %01000111 %10001110 \$8E, C = 0

In this case, the result is \$8E and the carry flag is cleared because the accumulator contains a zero in the seventh position. If we compare the contents of the accumulator before and after the shift, we notice that the accumulator has doubled. When we shift a normal decimal number one position left, we get the value times ten. With the binary system, shifting left to the next position results in only doubling the value. With the ASL instruction we have a simple method of doubling a number. Let us try another example:

ASL A	The	accui	mulator	cont	ains	\$CD
\$CD	% 11001	101				
	\$10011	010	\$9A,	C =	1	

Here too we double the original value and the carry flag is set. The double of \$CD (205) is therefore \$19A (410).

LSR

The LSR instruction (logical shift right) corresponds to the ASL instruction; here, however, the value is shifted right. The seventh bit is loaded with zero and bit zero is placed in the carry flag.

LSR A The accumulator contains \$CA.

```
$CA %11001010
%01100101 $65, C = 0
```

The result is \$65. The carry flag contains the value of bit position 0 before the shift occurs, in this case 0. So the carry flag is clear. You may have noticed that, shifting one bit position to the right divides the original value by two. The carry flag gives the contents of bit 0 before the shift. We can interpret the value of the carry as the remainder of the division by two. This way we can tell if a number is odd or even. The LSR instruction shifts the lowest bit into the carry. The carry flag can then be tested with BCC or BCS. If a memory location is addressed with the LSR instruction, the contents of the accumulator are retained.

ROL

With the ROL instruction (rotate left) we can shift a memory location or register left cyclically, that is, rotate the bits. The carry flag is shifted into bit 0 while the contents of bit 7 are placed in the carry. Therefore we have a cyclical shift of nine bits (8 bits of the register plus the carry flag). An example will clarify this.

ROL	А	The	accumu	lator	c cc	ontains	\$4B,
		the	carry	flag	is	set.	
.							
\$4B	801(0101	.1	C=1			
\$97	%100	01011	.1	C=0			

All bits are shifted one position to the left. The carry flag is transferred into the now-vacant bit 0. The pushed-out seventh bit is placed into the carry. We get a result of \$97 and a cleared carry. Here again the contents of the accumulator are doubled; any overflow is placed into the carry.

ROR

The ROR instruction (rotate right) is the opposite of the ROL instruction and rotates the contents of a register cyclically one position to the right. In so doing, the contents of the carry flag are placed into the now-free position 7 while the pushed-out contents of bit 0 are placed into the carry flag.

ROR	А				ontains clear.	\$89 ,
\$89	810	00010	001	C=0		
\$44	803	10001	.00	C=1		

From \$89 we get \$44, the carry is set and indicates a remainder from the division by two. All shift and rotate commands set the N and Z flags depending on if the result greater than \$7F or equal to 0.

This table contains the operation codes for all

addressing modes:

.....

Address mode	ASL	LSR	ROL	ROR		
accumulator absolute		\$4A \$4E			operation	code
zero page	\$06	\$46	\$26	\$66		
absolute x-indexed	\$1E	\$5E	\$3E	\$7E		
zero page y-indexed	\$16	\$56	\$36	\$76		

L. The Subroutine Instructions

A very important programming technique, which you already know from BASIC, is the use of subroutines. In BASIC, the instruction GOSUB is used to call a subroutine, and the instruction RETURN is used to return from the subroutine. How is a subroutine call distinguished from a normal jump instruction such as GOTO or JMP? When we call a subroutine, the processor or BASIC interpreter must make note of the location from which the subroutine was called so that the RETURN instruction can branch back to the location following the call. The BASIC interpreter does this for us; the 6510 also handles this task for us in machine language. In spite of this, however, we should know how it works.

So that the processor knows which instruction to branch back to on a RETURN instruction, the current address of the program counter is saved when the call is made. A special storage area is reserved for this, called the stack. This stack lies from address \$0100 to \$01FF (256 to 511). There is something called a stack pointer so that the microprocessor knows at which address of the stack it can save a return address. We have already been introduced to the stack register. Let's take a look at what happens when a subroutine is called.

The processor takes the current contents of the program

counter (+2) and divides it into high and low bytes. The high byte is stored at address \$100 plus SP. Then the contents of the stack pointer are decremented by one and the low byte is stored on the stack (address 100 + SP). Finally the stack pointer is decremented by one again. Now a branch is made to the subroutine.

When the processor encounters an RTS instruction, the opposite process takes place. The stack pointer is incremented by one and one byte is taken from the stack (address \$100 + SP). This byte is used as the low-byte of the program counter. Then the stack pointer is incremented again and the high-byte of the program counter is fetched from the stack. Now the program counter points to the next instruction after the subroutine call and the program is continued there.

When values are placed on the stack, the value is first saved on the stack and then the stack pointer is decremented by one. When getting a byte back from the stack, the stack pointer is first incremented by one. The stack grows from top to bottom (from \$1FF to \$100). An example will explain these events.

\$C480 JSR \$2000 SP = \$FA \$01FA = \$C4 SP=SP-1 \$01F9 = \$82 SP=SP-1 SP = \$F8

Now execution branches to \$2000, where for our example, there is a RETURN instruction.

\$2000 RTS SP = \$F8 SP=SP+1 PCL = (\$01F9) = \$82 SP=SP+1 PCH = (\$01FA) = \$C4 SP = \$FA

The program counter now contains \$C482. This value is then incremented by one and so points to \$C483, the next instruction after the subroutine call at address \$C480.

The stack works on the principle "Last In--First Out" (LIFO). The value last placed on the stack is the first value to be returned. Using this principle, it is also possible to nest subroutines. If a subroutine is called from another subroutine, the first RTS instruction encountered returns the instruction following the most recent JSR instruction. The next RTS instruction then returns control to the instruction following the next most recent JSR instruction. For example:

Once you become familiar with the operation of the stack, you can also use it for temporary storage of data. This is described in the next section.

The table contains the operation codes for subroutine call and return.

Command	Op code
JSR	\$20
RTS	\$60

2.5

M. The Stack Instructions

The 6510 has the ability to save the contents of the accumulator and the status register on the stack and to get them back again. The stack pointer is automatically decremented after writing and incremented before reading.

PHA

The instruction PHA (push accumulator) saves the contents of the accumulator on the stack and decrements the stack pointer by one. The contents of the accumulator are unchanged.

PHP

With the PHP instruction (push processor status), the entire status register (contents of the flags) is placed on the stack and the stack pointer is decremented by one. The contents of the status register are retained.

PLA

The PLA instruction (pull accumulator) is the opposite of PHA. The stack pointer is incremented and a byte read

from the stack into the accumulator. The N and Z flags are set according to the value.

PLP

With this instruction, one byte is fetched from the stack and placed in the status register. This is the complement of PHP.

The table contains the operation codes.

Command	Op code
PHA	\$48
PHP	\$08
PLA	\$68
PLP	\$28

N. Instructions for handling interrupts

We are not going to use use these instructions but mention them only for the sake of completeness. The 6510 has the ability to interrupt a program from the outside world. For this, the interrupt line (IRQ, interrupt request) of the processor must be activated. The interrupt procedure is similar to a subroutine call. The processor interrupts the current program and places the contents of the program counter and the status register on the stack. Now execution branches to the address contained at \$FFFE and \$FFFF. The contents of these addresses are used as the new program counter.

In addition to an interruption from the outside, the 6510 can also interrupt a program through a instruction from within the program. The instruction BRK (break) serves this purpose. The program counter and the status register are saved on the stack.

In order to return to the main program from an interrupt routine, there is a instruction similar to the RTS instruction for subroutines. The instruction RTI (return from interrupt) gets the program counter and the contents of the status register back from the stack so that the program can continue without changing the flags.

The following table contains the operation codes for

these commands:

Command	Op code
BRK	\$00
RTI	\$40

There is one instruction which has not been mentioned yet which does absolutely nothing and so is called NOP (no operation). This instruction is used to remove operation codes from a program without shifting the rest of the commands, as well as in delay loops (this instruction too requires a certain amount of time to execute).

```
Command Op code
------
NOP $EA
```

4. Entering Machine Language Programs

Now that we have become acquainted with the instructions of the microprocessor and their functions, let's turn our thoughts to writing programs in machine language. How do we enter such programs?

As we have already seen from the descriptions of the instructions, a machine language program program consists simply of a set of instruction codes and their corresponding operands, if any. As a simple example, we will display a character on the screen of the Commodore 64. We can do this with these simple POKE commands in BASIC:

POKE 1024,1 : REM DISPLAY CODE FOR A POKE 55296,7 : REM COLOR CODE FOR YELLOW

When we execute both commands, a yellow "A" appears in the upper left-hand corner of the display. Now we want to see how these two commands can be performed in machine language. For this, we recall that the POKE command can be replaced by the instruction STA. This instruction places the contents of the accumulator at the address specified by the operand. First load the accumulator with the desired value.

LDA #1 STA 1024

Here the accumulator is loaded with the value 1 and the

contents are saved at address 1024. In the same way, we can set the value for the color code.

LDA #7 STA 55296

If we were to try entering these instructions directly into the computer, we would get a **?SYNTAX ERROR.** The Commodore 64 normally understands only BASIC commands. These instructions are "foreign" to the BASIC interpreter. Therefore we must proceed in a different manner. Recall that a machine language program is nothing more that a group of binary instruction codes and operands in memory.

We must convert the mnemonic instructions into their corresponding binary instruction (or operation) codes. To do this, we use the table in Appendix A. For a LDA instruction using the immediate addressing mode(we want to load the accumulator with the number 1, not with the contents of memory location 1) we find that the opcode is \$A9. Next follows the operand itself, 1. We are using absolute addressing for the STA instruction. The instruction is therefore \$8D. The operand in this case is a memory address, saved as a 16-bit value. For this it must be divided into two 8-bit values. First comes the low-byte and then the high-byte. Separating a 16-bit value is easier to perform if we first convert the number to hexadecimal. Therefore we convert 1024 to the hexadecimal number \$0400. 55296 becomes

\$D800. Let's rewrite our program using hexadecimal numbers.

LDA #\$01 STA \$0400 LDA #\$07 STA \$D800

The low-byte of \$0400 is \$00 and the high-byte is \$04. The instruction STA \$0400 is represented as \$8D, \$00, \$04. LDA #\$07 STA \$D800 are represented as \$A9, \$07, \$8D, \$00, \$D8. Our complete program looks like this:

\$A9, \$01, \$8D, \$00, \$04, \$A9, \$07, \$8D, \$00, \$D8

This set of bytes must now placed in memory. Here we encounter the next problem: Where should our program be placed in memory? We must find an area which is not used by the operating system or the BASIC interpreter. For the Commodore 64 we have such an area from address 49152 to 53247 or \$C000 to \$CFFF. This area is 4K bytes large and will suffice even for very large machine language programs. Let's place our program in memory beginning at address 49152. We can do this with a small BASIC program. First change the hexadecimal numbers to decimal.

169, 0, 141, 0, 4, 169, 7, 141, 0, 216

100 FOR I=0 TO 9 110 READ A : POKE 49152+I,A 120 NEXT 130 DATA 169,0,141,0,4,169,7,141,0,216

When we RUN this program, the machine language program is usually placed into memory beginning at address 49152. Now we can finally execute our program. The SYS instruction is used for this in BASIC. If we give the starting address of 49152 after the SYS instruction, the program is executed from BASIC. Be careful! What happens once the processor has executed the instruction STA \$D800? It gets the contents of the next memory location and interprets it as a instruction code. If it is not a legal instruction, the processor may enter an uncontrollable state and "crash." You must then turn the computer off and then on again. The program is lost and you must start over from the beginning.

Once the processor has executed the four instructions, control should be returned to the BASIC interpreter. The SYS instruction executes our program as a subroutine. We should end the program with an RTS instruction.

POKE 49152+10,96

We can place the RTS code at the end of our program. Now we can start our program with:

SYS 49152

Immediately a yellow A appears in the upper corner of the display and the computer responds with **READY..**

Is this procedure too complicated for you? If so, then you are not alone. Ways have been found to automate this process. After all, this is why you have has a computer!

You need a program that accepts machine language instructions such as "LDA #1" and automatically converts the mnemonics to their proper operation code and writes the generated code into memory. Such a program is called an assembler. So that you can start working with an assembler from the beginning and not lose your desire by working through boring calculations and table consultations, we have written a complete assembler for you. Before we explain the operation of the assembler, we will take a look at other utility programs that can be used for machine language programming.

The first is the monitor program. A monitor permits the direct access of the memory and registers of the microprocessor. With the monitor you can examine and alter the contents of memory and registers. In addition, you can start executing a machine language program from a monitor. Most monitor programs also permit saving and loading of programs to/from cassette or disk. If you have a monitor, then you can enter your machine language programs in hex code. This is fine for small programs or changes. Often the monitor contains something called a disassembler as well. Such a program is the opposite of an assembler. The disassembler reads a program from memory and outputs it in

. 85

mnemonic form; \$A9, \$01 are translated to LDA #\$01, for example. We have also written a disassembler. It is presented later. Using this program you can disassemble not only your own programs, but parts of the operating system and BASIC interpreter as well. You can often get valuable hints by looking at other example of good programming.

4. The Assembler

Here's a small machine language program that demonstrates the advantages of an assembler over manual entry of a machine language program.

This program displays the entire character set of the Commodore 64 on the screen. We'll do this first with a BASIC program.

The Commodore 64 can display 256 different characters on the screen; the display codes range from 0 to 255. Each display code places a unique character on the screen. Using BASIC you can do this with a loop.

100 X = 0 110 A = X 120 POKE 1024+X, A : REM DISPLAY CODE 130 A = 1 140 POKE 55296+X, A : REM COLOR CODE 150 X = X + 1 160 IF X <> 256 THEN 110 170 END

If you RUN this program, the entire character set of the Commodore 64 is displayed. Note that the time to RUN this program is about 7 seconds.

This BASIC program is written so that you can easily convert it to machine language. Now for the conversion! We'll handle it line by line. First we can use the X-register in place of

the variable X:

100 X = 0 => LDX #\$0

We can use the accumulator in place of the variable A. The next line copies the contents of the X-register into the accumulator:

. **,** '

 $110 A = X \implies TAX$

The contents of the X-register remains unchanged. Now the contents of the accumulator are place into memory at location 1024+X. Indexed addressing is used:

120 POKE 1024+X, A => STA 1024,X

Next the accumulator is loaded with the color code for white, 1.

130 A = 1 => LDA #1

This color code is then stored in the corresponding color memory location, 55296+X. Again indexed addressing is used:

140 POKE 55296+X,A => STA 55296,X

The value in the X-register is now incremented by one:

150 X = X + 1 => INX

The next conversion is not as straight-forward:

160 IF X <> 256 THEN 110 => ?

This BASIC statement requires some consideration. We want to branch back to line 110 if the contents of X is not equal to 256. But the X-register can hold values only up to 255. What happens when the X-register contains 255 and an INX instruction (in line 150) is executed? Incrementing from 255 (\$FF) we get \$100. The overflow is simply ignored and the result is \$00--zero.

How can we recognize this case? Recall the discussion concerning the flags. Each time the X-register is incremented, the N and Z flags are also affected. After the INX instruction, if the value in the X-register is greater than \$7F (127), the N flag is set, otherwise it is cleared. Similarly if the value in the X-register is zero after the INX instruction, the Z flag is set, otherwise it is cleared. So can use the contents of the zero flag as the basis of our decision. If it is not set, the contents are not equal to 256 (0) and we must branch back to line 110.

160 IF X <> 256 THEN 110 => BNE line 110

Here's another problem. In machine language programming we cannot say "branch to line 110". Instead we must specify the memory address at which the instruction in line 110 is

. 89

. .

located.

We do not know what the address is yet. We must determine the program starting address and the length of each instruction. If we begin the program at address 49152 or \$C000, then these are the addresses of each instruction:

LINE#	ADDRESS	MNEMONIC
100	\$C000	LDX #0
110	\$C002	TXA
120	\$C003	STA \$0400,X
130	\$C006	LDA #1
140	\$C008	STA \$D800,X
150	\$C00B	INX
160	\$C00C	BNE \$C002
170	\$C00E	RTS

How did we do this? First set a "program counter" to the starting address of the program. In this case it starts at \$C000. Now find the length of each instruction by looking in Appendix D. The length is either one, two or three bytes. Update the "program counter" by adding the length of the instruction. The "program counter" now contains the address of the next instruction. Repeat this for each instruction.

After hand assembling the program, we find that the instruction at line 160 must branch to address \$C002. Now take the trouble to convert the program to generate the machine code. Here's the code:

100	\$C000	A2 00	LDX \$0
110	\$C002	8A	TXA
120	\$C003	9D 00 04	STA \$0400,X
130	\$C006	A9 01	LDA #1
140	\$C008	9D 00 D8	STA \$D800,X
150	\$C00B	E8	INX
160	\$C00C	D0 ??	BNE \$C002
170	\$C00E	60	RTS

We can substitute the operation code for the mnemonic according to APPENDIX A. We must convert the 16-bit absolute addresses found in line 120 and 140 to their reverse forms (00 04 and 00 D8). Next we must calculate the missing offset for the branch instruction in line 160. To do this, first form the positive difference between the addresses and form the two's complement of the result.

We find that the offset is \$F4. Enter this value as the operand of the BNE instruction above.

We have completed the hand assembly of this program. To test the program, the machine language program has to be in memory. You have to write the operation codes into memory somehow such as POKing them.

Here's an example:

100 REM SAMPLE ML PROGRAM TO DISPLAY CHARACTERS ON SCREEN
150 ML = 49152
200 FOR I = 0 TO 14
210 READ OC
220 POKE ML+I,OC
230 NEXT I
240 END
300 DATA 160, 0, 138, 157, 0, 4, 169, 1
310 DATA 157, 0, 216, 232, 208, 244, 96

Run the BASIc program to put the machine language routine in memory beginning at 49152. Now to test it, move the cursor to the lower half of the screen and enter:

SYS 49152

Almost immediately, the entire character set appears on the screen. The program which took more than seven seconds to run in BASIC now runs in a fraction of a second. It is an impressive demonstration of the speed which can be attained with machine language.

Now let's use the LEA (Lothar Englisch Assembler - named after the author) to enter machine language programs. An assembler makes machine language programming quicker, easier and less prone to error. Using the LEA, you can enter machine language programs into the computer in exactly the same way as you enter BASIC programs. You can add, delete or insert or change lines just as in BASIC. The listing for the LEA is at the end of this chapter.

A program line is called a **source statement**. When using the LEA, the source statement always begins with a line number. It also has: an optional label (more about this shortly); the mnemonic code for the machine language instruction (LDA, STA, etc.); any required or optional operand(s); and optional comments. By using comments within your assembler source program, you can describe the purpose of each instruction. Comments are denoted with a semicolon and are ignored by the assembler, but appear in the listing for your own information. They correspond to the BASIC command REM.

A complete line of assembler source for the LEA might look like this:

100 TEXT LDA \$70,X ;GET START VALUE

A complete LEA source program can also be SAVEd to disk, just like BASIC. The LEA requires you to distinguish this source program from the machine language program that it later creates by suffixing **.SRC** to the name. After you create your assembler source file, you then load the LEA assembler. Once started with RUN, LEA asks for the name of the program to be assembled (the one you just SAVEd). The LEA reads this program from the disk and creates the machine code program from it, which it places directly in memory.

In addition, the LEA produces an optional assembly listing containing the line numbers, source statement instructions

including comments and generated machine codes in hexadecimal format. When assembling, the LEA automatically calculates the addresses and offsets for branches. You as the programmer, need give the branch destination not as an absolute address, but symbolically in the form of a label (also called symbol). Our example program from before looks like this:

100		LDX	#0
110	LOOP	TXA	
120		STA	\$0400,X
130		LDA	#1
140	-	STA	\$D800,X
150		INX	
160		BNE	LOOP
170		RTS	

Here we simply give a label to the address that we want to refer to later. In this case we used the symbol LOOP. As the assembler processes the source program, it encounters a label. It makes note of the label, LOOP, and the value the program counter at which the label (or symbol) is found. In our example, the program counter has the value \$C002 at line 110. The assembler assigns this value to the symbol LOOP. Later, the offset for the branch instruction can be calculated from the immediate value of the program counter and the value of the symbol. As the assembler works its way through the source program, it automatically places the operation code for the mnemonic instructions and their operands in memory so that the machine language program is ready to be executed at the end of the assembly.

Using this technique, it is possible that you might refer to a label before it is defined:

100		LDA	\$40
110		BEQ	CONT
120		LDX	#\$FF
130	CONT	STX	\$D840
140		RTS	

In this program line 110 refers to a label (CONT) which at that point is not yet defined. The assembler has no way of knowing the value of the symbol CONT. So the assembler is designed to go though the source program twice. The first time through, the LEA makes note of all the symbols and their values. The second time through, it does the actual assembling or code generation. So during the second time through, when the LEA comes to line 110, it already knows the value of CONT from the first time through and can calculate the offset for the branch instruction.

Since the LEA assembler reads the source program twice, it is said to be a 2-pass assembler. So that you can see the progress of the assembler, the LEA displays the number of the line it is currently working on.

When you enter a source program by using the built-in BASIC line editor, the BASIC interpreter searches through the source statements for BASIC command keywords. When it finds them, it converts these into one-byte codes called **tokens**. As a result, the LEA assembler cannot normally recognize

words that contain BASIC keywords such as ON, TO, and even = and * because they have been converted to tokens. For this reason, you must first enter and RUN the following BASIC program, called UNTOKEN before using the BASIC line editor to create the assembler source file. UNTOKEN inhibits BASIC from tokenizing normal BASIC keywords. Thus BASIC keywords are not be converted to their corresponding tokens. This enables the LEA to recognize their untokenized equivalents in normal text.

When you are finished using the LEA, and you want to enter normal BASIC programs again, enter the instruction:

SYS 53181

This re-enables BASIC to tokenize its keywords.

0 REM PROGRAM UNTOKEN 100 FOR I = 53100 TO 53191 110 READ X : POKE I,X : S=S+X : NEXT 120 DATA 169,119,160,207,141, 2, 3,140, 3, 3, 96, 32 130 DATA 96,165,134,122,132,123, 32,115, 0,170,240,243 140 DATA 162,255,134, 58,144, 6, 32,121,165, 76,225,167 150 DATA 32,107,169,160, 0,162, 0,189, 0, 2,232,201 160 DATA 32,240,248,201, 48,144, 4,201, 58,144,240,153 170 DATA 0, 2,201, 0,240, 7,189, 0, 2,200,232,208 180 DATA 242,200,200,200,200,76,162,164,169,131,160 190 DATA 164,141, 2, 3,140, 3, 3,96 200 IF S <> 11096 THEN PRINT "ERROR IN DATA !!" : END 210 SYS 53100 : PRINT "OK"

After you key in this program, you should save a copy on each diskette on which you will later store assembler source

programs. Remember to load and RUN UNTOKEN before creating assembler source programs.

Now enter the earlier sample program. Insert line 180 which contains **.EN**. This is a pseudo-instruction which tells the assembler that this statement is at the end of your source program. Save the source program on disk with the name **TEST.SRC.**

Did you remember to first LOAD and RUN the above **UNTOKEN** program? Now you can load the LEA assembler and RUN it. The following appears on the screen. Respond as requested.

6510 - ASSEMBLER

SOURCE FILE	NAME	?	TEST
LISTING Y/N		?	Y
PRINTER Y/N		?	N

After a short time the message **PASS** 1 appears on the screen and the disk drive shows some activity. Now the line numbers from 100 to 180 appear on the screen. During the second pass, the listing is displayed:

PASS 2 C000 C002 C003 C006 C008 C008 C008 C000	A2 8A 9D A9 9D E8 D0	00 00 01 00 F4	04 D8	100 110 120 130 140 150 160	LOOP	LDX TXA STA LDA STA INX BNE	#0 \$0400,X #1 \$D800,X LOOP
C00C C00E	D0 60	F4		160 170 180		BNE RTS .EN	LOOP

LABEL C002

When the listing is completed, the LEA assembler asks you if the generated machine language program should be saved to diskette. Answer with Y(es).

SAVE Y/N ? Y

The program is saved to diskette under the name TEST.OBJ on the diskette (OBJ = OBJect program). Statistics about the generated code and errors are also displayed:

C000 / C00F / 000F SOURCE FILE IS TEST.SRC 0 ERRORS

The assembler offers the option of displaying all the symbols and their values.

SYMBOL TABLE Y/N ? Y SORT Y/N ? N LOOP C002

You can also specify that the table is to be sorted alphabetically.

The generated machine language program is now contained on the diskette with the name **TEST.OBJ.** There is also a copy of it in memory, ready to be executed. Now test it out by entering:

SYS 49152

The entire character set appears on the screen almost immediately.

There are a few things about the assembler you should know. Each line of the source program consists of a line number, an optional symbol (also called label), and a mnemonic instruction such as LDA, followed by the operands (if necessary) and comments separated by a semicolon. The comments may be omitted of course, but we advise you to make liberal use of these and describe exactly the operations you intend. Should you lay your program aside and need to use or change it at a later time, you will be thankful that you commented it.

The symbols may be maximum of five characters in length. In addition to the implicit symbol definitions (labels), you can assign values to symbols directly. This makes programs easier to understand and easier to read.

In this example, we use symbols for the addresses of the color and screen memory:

PASS 2							
0400				70	VIDEO	=	\$400
D800				80	COLOR	=	\$D800
C000				90		*=	\$C000
C000	A2	00		100		LDX	#0
C002	8A			110	LOOP	TXA	
C003	9D	00	04	120		STA	VIDEO,X
C006	A9	01		130		LDA	#1
C008	9D	00	D8	140		STA	COLOR,X
C00B	E8			150		INX	
C00C	D0	F4		160		BNE	LOOP
C00E	60			170		RTS	
				180		.EN	

If you assemble this program and display the sorted symbol table, you will see:

COLOR D800 LOOP C002 VIDEO 0400

Line 70 contains a pseudo-instruction = which directs the assembler to assign the value \$0400 to the symbol VIDEO. Anytime you use the symbol VIDEO, the assembler knows to use the value \$0400 to calculate the operands.

Line 90 contains another pseudo-instruction, *=. It tells the assembler to begin the assembly process at memory . location \$C000. It is placed at the start of each program. Using it, you can instruct the assembler to place your code at any desired place in memory.

What are the advantages of using symbols? There are two main advantages. First, through the choice of name, the purpose of an individual memory location can be easily determined (e.g. COLOR). Second, such a program is easier to change. If you enter the wrong location of the video RAM, you need only change the value of VIDEO at the beginning of the program. All references to this name are then changed. This is even more useful the more times such a name appears in a program.

A pseudo-instruction, gives processing directions to the assembler. For example, the pseudo-instruction **.BY**, tells

the assembler to place specific values in the machine language program. You can, for example, store data or text within your machine language program. The pseudo-instruction for this is called:

.BY

An operand in the range from 0 to 255 must follow the .BY pseudo-instruction. This operand value is placed at the current location of the program counter. Using .BY, you can insert symbols and constants into the program. For example:

.BY 100 .BY \$7F .BY CR

.BY has an additional option. Sometimes, you have to divide a 16-bit value into two 8-bit values. The operators > and < allow you to do this. The > symbol denotes the high-byte (bits 8 through 15) of a 16-bit value, while the < symbol denotes the low-byte (bits 0 to 7). Here's an example:

100 CONST = \$AB3F 110 .BY <CONST 120 .BY >CONST

This program segment places the values \$3F and \$AB in the program. These operators can be used for immediate addressing with the # character, for example:

130 LDA #<CONST 140 LDY #>CONST

In order to use zero-page addressing, you must prefix operands with an asterisk, *. If you don't, the assembler uses absolute addressing. This is not necessary for indexed addressing which works only with zero-page addresses.

00B0			100 START	=	\$B0
C000	AD BO	00	110	LDA	START
C003	A4 B0		120	LDY	*START
C005	8D 27	00	130	STA	\$27
C008	84 60		140	STY	*\$60
C00A	24 BO		150	BIT	*START

The above example shows you that without the asterisk (lines 110 and 130), an absolute addressing mode, three-byte form of the instruction is generated. The zero-page addressing mode is selected by placing the asterisk in front of the operand, resulting in a two-byte instruction (lines 120, 140 and 150).

Now that you are acquainted with the functions of the LEA assembler, you can concentrate on programming. On the next pages you find the listing of the LEA assembler and a short description of the operations and the variables used by the program.

Try not to key the listing "blindly". Read the description of the routines as you go along, and try to understand how the assembler works. By doing this, you can learn not only

about the operation of the assembler, but also something about machine language as well.

You can also order a diskette containing the LEA assembler, 6510 Single-Step Simulator and Disassembler. This saves you the time and effort of keying these programs from the listings. See ordering instructions in APPENDIX F. 100 REM 6510 ASSEMBLER 110 PRINT CHR\$(147):PRINT:PRINT:PRINT,"6510 ASSEMBLER":PRIN1:DG=8 120 INPUT"SOURCE FILE NAME "; SN\$ 130 IFRIGHT\$(SN\$,4)=".SRC"THENSN\$=LEFT\$(SN\$,LEN(SN\$)-4) 140 DD#="0":REM DRIVE NUMBER 150 INPUT"LISTING Y/N ": A\$: IFA\$<>"Y"THENPM=1:GOT0190 160 PF=4:PG=3 170 INPUT"PRINTER Y/N ":A\$: IFA\$="Y"THENPG=4 180 OPENPF, PG 190 GOSUB5000: REM BUILD TABLES 200 A=0: AD=49152: PRINT: PRINT: PA=A 210 PRINT"PASS 1": GOSUB4000: PRINT"PASS 2": FF%=0: FE%=0 220 OP\$=DD\$+":"+SN\$+".SRC" 230 OPENB,DG,0,OP\$ 240 GET#8, A\$, A\$: REM START ADDRESS 250 IFPM=1THENPRINTCHR\$(145),,ZN\$ 260 F%=0: IFAD>65535THENPRINT: PRINT: PRINT"MEMORY OVERFLOW! ": GOTO1000 270 A=AD: GOSUB3240: PR\$=A\$+" ": GOSUB2000: IFLEFT\$(X\$,3)=".EN" | HEN1000 280 XX\$=LEFT\$(X\$,1): IFXX\$="*"THENPR\$=" ":LN\$=" 290 IFXX\$="."ORXX\$="*"ORXX\$="="THENGOSUB2900:GD10380 295 IFXX == ""THENPR == PR + " ": GOT0430 300 ONLM%G0T0320 310 SA=OF+AD:PA=AD:LM%=1 320 XX\$=LEFT\$(X\$.3):FORJ=OTONN%:IFXX\$=MN\$(J)THEN350 330 NEXT 340 FL\$(1)="A": A%=1: F%=1: GOSUB1520: GOT0370 350 GOSUB2400:F%=0:IFT%=5ANDT%(J.9)>OTHENT%=9:REM RELATIVE 360 DNT%+160SUB500,600,600,600,800,800,800,500,900,600,600,800 370 POKE OF+AD,A 380 AD=AD+A%: IFLEFT\$(X\$,2)="*="THEN400 390 LX=AD 400 REM ******* OUTPUT 410 IFF%=OTHENIFFL\$(0)=" "ANDFL\$(1)=" "ANDFL\$(2)=" "THEN430 420 BS%=BS%+1 430 ONPMG0T0250 440 Y#=LEFT#(Y#+" ",11):FORI=1T03:PRINT#PF,FL\$(I)::NEX1 450 PRINT#PF,PR\$ZN\$LN\$" "LEFT\$(X\$+" ",6)Y\$" "RM\$ 460 GOTO 250 500 REM ONE-BYTE COMMANDS 510 A%=1:A=T%(J,T%):IFA<OTHENFL\$(2)="A":GOT01510 520 GOSUB3240: PR\$=PR\$+RIGHT\$(A\$,2)+" ": RETURN 600 REM TWO-BYTE COMMANDS 610 A=T%(J,T%): IFA<OTHENFL\$(2)="A":GOTD1500 620 GOSUB3240: PR\$=PR\$+RIGHT\$(A\$.2) 630 YY\$=YA\$: IFLEFT\$(YY\$,1)="#"THENYY\$=MID\$(YY\$,2) 640 IFLEFT\$(YY\$,1)="*"THENYY\$=MID\$(YY\$,2) 650 A%=2: IFLEFT\$(YY\$,1)=">"ORLEFT\$(YY\$,1)="<"THENYY\$=MID\$(YY\$,2) 660 A#=LEFT#(YY#,1): IFA#="#"ORA#>"/"ANDA#<": "IHENA#=YY#: G0T0690 670 SL\$=YY\$:GOSUB4500 680 A\$="\$"+HE\$ 690 GOSUB3100 700 IFLEFT\$(YA\$,2)="#>"THENA=INT(A/HI) 710 IFLEFT\$(YA\$,2)="#<"THENA=A-INT(A/HI)*HI 720 IFA>LOTHENFL\$(2)="0":F%=1:A=0 730 GOSUB3240:POKEOF+AD+1,AL%:PR\$=PR\$+" "+RIGHT\$("00"+A\$,2)+" 740 A=T%(J,T%):RETURN

```
800 REM THREE-BYTE COMMANDS
810 A%=3
820 A=T% (J.T%)
830 GOSUB3240:PR$=PR$+RIGHT$(A$,2)
840 A$=LEFT$(YA$,1); IFA$="$"ORA$>"/"ANDA$<"; "THENA$=YA$; GOT0870
850 SL$=YA$: GDSUB4500
860 A#="#"+HE#
870 GOSUB3100:GOSUB3240:PR$=PR$+" "+RIGHT$("00"+A$,2)+" "+LEFT$
(A$,2)+"
880 POKEOF+AD+1.AL% POKEOF+AD+2.AH%
890 A=T%(J,T%):RETURN
900 REM RELATIVE
910 A%=2
920 A=T%(J,T%):GOSUB3240:PR$=PR$+RIGHT$(A$,2)
930 A*=LEFT*(Y*,1): IFA*="*"0RA*>"/"ANDA*<": "THENA*=Y*: G0T0960
940 SL$=Y$:GDSUB4500
950 A#="#"+HE#
960 GOSUB3100: IFFL$(2) ="U"THENA=AD+2
970 DF=A-(AD+2): IFDF<-1280RDF>127THENFL*(3)="R":F%=1:DF=0
980 A=DFANDL0:GOSUB3240
990 PR$=PR$+" "+RIGHT$(A$,2)+"
                                   ": POKEOF+AD+1.A: A=T% (J.1%): RETURN
1000 PR$="
                          ": IFF%=OTHEN1020
1010 BS%=BS%+1
1020 IFAE<AD+OFTHENAE=AD+OF
1030 ONPMG0T01060
1040 FORI=OTO3:PRINT#PF,FL$(I);:NEXT
1050 PRINT#PF,PR$,ZN$,LN$" "LEFT$(X$+"
                                           ".6)Y$" "RM$
                                ";A$:IFA$<>"Y"THEN1130
1060 CLOSEB: INPUT"SAVE Y/N
1070 A$=DD$+":"+SN$+".OBJ"
1080 A%=LEN(A$): POKE183, A%: POKE187, 681ANDLD: POKE188, 681/HI
1090 FORI=1TOA%: POKE680+I, ASC (MID$ (A$, I)): NEXT: REM FILENAME
1100 A=SA: GOSUB3240: POKE251, AL%: POKE252, AH%: REM START ADDRESS
1110 A=AE:GOSUB3240:POKE781.AL%:POKE782.AH%:REM END ADDRESS
1120 POKE780,251:SYS65496:REM SAVE
1130 A=PA: GOSUB3240: PA$=A$: A=AD: GOSUB3240: AD$=A$: A=AD-PA: GOSUB3240
1140 BA$=A$: ONPMGOT01180
1150 PRINT#PF:PRINT#PF,PA$" / "AD$" / "BA$
1160 PRINT#PF, "SOURCE FILE IS "SN#+".SRC"
1170 PRINT#PF, BS%"ERROR(S) ": PRINT#PF
11B0 INPUT"SYMBOL TABLE Y/N "; Z$: IFZ$<>"Y"THEN1400
1190 MX=2: IFPG>3THENPRINT#PF, CHR$(12):MX=5
1200 INPUT"SORT Y/N "; Z$: IFZ$="Y"THEN1300
1210 ONPMGOT01220
1220 M%=0:P$="":FORI=LL%TOUL%
1230 IFLB$(I)="
                    "THEN1290
1240 P_{=}P_{+LB_{(I)}} "+HE_{(I)}+"
                                      ": M%=M%+1
1250 IFM%<>MXTHEN1290
1260 ONPMG0T01280
1270 PRINT#PF.P$
1280 P$="":M%=0:IFI>=UL%THEN1400
1290 NEXTI: IFP$<>""THEN1260
1300 HI$=CHR$(127)+CHR$(127)+CHR$(127)+CHR$(127)+CHR$(127):F%=0
:REM SORT
1310 M%=0:SL$=HI$:FORI=LL%TOUL%:IFLB$(I)="
                                                 "THEN1340
1320 IFLB$(I)<SL$THENSL$=LB$(1):M%=I+1
1330 UL%=I
1340 NEXTI: IFF%<MXTHEN1360
1350 F%=0: IFPM=OTHENPRINT#PF
1360 IFM%=0THEN1400
1370 ONPMG0T01390
```

```
1380 PRINT#PF,SL$" "HE$(M%-1)"
                                      1390 LB$(M%-1)="
                      ":F%=F%+1:G0T01310
1400 REM
1410 IFPG=4THENPRINT#PF.CHR$(12)
1420 CLOSEPF: END
1500 POKEOF+AD+2,0:REM NOP FILLER
1510 POKEOF+AD+1,0
1520 A=0:PR#=PR#+NP#(A%):RETURN
1600 IFLEFT$(LN$,1)="."THENI=-1:RETURN
1610 IFMID$(LN$,4,1)<>" "THENI=NNZ+1:RETURN
1620 MN#=LEFT#(LN#,3):REM LABEL=MNEMONIC?
1630 FORI=OTONN%: IFMN$<>MN$(I) THENNEXT
1640 RETURN
2000 GET#8,A$,B$:IFA$+B$=""THEN2290:REM LEFT ADDRESS
2010 GET#8.Z1$.Z2$
2020 ZN=ASC(Z1$+CHR$(0))+HI*ASC(Z2$+CHR$(0))
2030 ZN$=RIGHT$(" "+STR$(ZN),5)+" '
2040 GOSUB2300: IFFF%THENRETURN
2050 LN#="":X#="":Y#="":RM#="":X%=0
2060 FORI=0TD3:FL$(I)=" ":NEXTI:IFZ$="*"THEN2190
2070 IFZ$=";"THEN2280
2080 REM LABEL NAME
2090 IFZ$=" "ORFF%THENLN$=LEFT$(LN$+"
                                          ",5):GOTO2120
2100 LN#=LN#+Z#: IFLEN(LN#)=6THENX%=1:FL#(0)="L"
2110 GOSUB2300:GOTD2090
2120 GOSUB1600: IFI<=NN%THENX$=LN$:LN$="
                                              ":GOT02200
2130 X%=ASC(LN$): IFX%<650RX%>90THENFL$(0)="S"
2140 REM OPERATION
2150 GOSUB2300: IFFF%THENRETURN
2160 IFZ$<>" "THEN2190
2170 G0T02150
2180 GOSUB2300: IFFF%THENRETURN
2190 IFZ$<>" "THENX$=X$+Z$:G0T02180
2200 IFFF%THENRETURN
2210 IFZ$=";"THEN2280
2220 IFZ$<>" "THEN2260:REM OPERAND
2230 GOSUB2300: IFFF%THENRETURN
2240 GOT02200
2250 GOSUB2300: IFFF%THENRETURN
2260 IFZ$<>" "THENY$=Y$+Z$:GOT02250
2270 GOSUB2300: IFFF%THENRETURN: REM COMMENT
2280 RM$=RM$+Z$:GOT02270
                                             ":Y$="":ZN$="
                                                                  "*RETHRM
2290 X#=".EN":RM#="END ASSUMED":LN#="
2300 GET#8,Z$:FF%=Z$="":RETURN
2400 REM DETERMINE ADDRESSING MODE
2410 IFY#=""THENT%=8:RETURN:REM IMPLICIT
2420 YA$=Y$:IFLEFT$(YA$,1)="("THENYA$=MID$(YA$,2)
2430 IFRIGHT$(YA$,1)=")"THENYA$=LEFT$(YA$,LEN(YA$)-1)
2440 IFRIGHT$(YA$,3)="),Y"THENYA$=LEFT$(YA$,LEN(YA$)-3)
2450 IFRIGHT$(YA$,2)=",Y"ORRIGHT$(YA$,2)=",X"THENYA$=LEFT$(YA$,LEN
(YA$)-2)
2460 Z$=Y$:K$=LEFT$(Y$,1)
2470 IFZ#="A"THENT%=0:RETURN:REM_ACCUMULATOR
2480 IFK#="#"THENT%=1:RETURN:REM IMMEDIATE
2490 IFK#="("THEN2600:REM INDIRECT
2500 ZP=K#="*":REM ZERO PAGE
2510 Z$=MID$(Y$,2+ZP)
2520 IFLEN(Z$)<2THEN2550
2530 K#=MID#(Z#,LEN(Z#)-1,1)
```

```
2540 IFK$="."THEN2570:REM INDEXED
2550 T%=5
2560 T%=T%+3*ZP:RETURN:REM ABSOLUTE OR ZERO-PAGE
2570 K#=RIGHT#(Z#,1):IFK#="X"THENT%=6:GOT02560
2580 IFK$="Y"THENT%=7:GOT02560
2590 T%=-1: RETURN: REM SYNTAX ERROR
2600 K#=RIGHT#(Z#,1):IFK#=")"THEN2630
2610 IFRIGHT$(Z$,2)<>",Y"THEN2590
2620 T%=11: RETURN
2630 IFMID$(Z$,LEN(Z$)-2,2)=",X"THENT%=10:RETURN
2640 T%=12:RETURN
2700 IFX#="="THEN2730:REM PSEUDO-OPS PASS 1
2710 IFLEFT$(X$,2)="*="THEN2780
2715 IFLEFT$(X$.3)=".BY"THENA%=1:RETURN
2720 A%=0:RETURN
2730 A%=0: IFY$="*"THENRETURN
2740 A%=ASC(LEFT$(LN$,1)):IFA%<650RA%>90THENRETURN
2750 A#=LEFT#(Y#,1):IFA#<>"#"AND(A#<"0"DRA#>"9")THENRETURN
2760 A$=Y$:GOSUB3100:IFF%THENML$(HC%)=FL$(2):RETURN
2770 GOSUB3240:HE$(HC%)=RIGHT$("00000"+A$.4);RETURN
2780 A%=0:Y1$=LEFT$(Y$.1):IFY1$="$"DRY1$>"/"ANDY1$<":"THEN2800
2790 RETURN
2800 A$=Y$: GOSUB3100: IFF%THENRETURN
2810 HA=A: GOSUB3240: X%=ASC (LEFT$ (LN$+CHR$ (0),1)): IFX%>64ANDX%<91
THENHES (HC%) = 0.5
2820 RETURN
2900 IFXX$="="THEN2940:REM PSEUDO-OPS PASS 2
2910 IFLEFT$(X$,2)="*="THEN2990
2915 IFLEFT$(X$,3)=".BY"THEN2991
2920 FL$(1)="S"
2930 A%=0:F%=1:PR$="
                                     ": RETURN
2940 A%=0
2950 A$=LEFT$(Y$,1)
2960 IFA$<>"*"ANDA$<>"$"AND(A$<"0"ORA$>"9")THENFL$(2)="S":G0T02930
2970 SL$=LN$:F%=0:GOSUB4500:IFF%THENFL$(0)=FL$(2):FL$(2)=" ":GOT02930
2980 PR$=HE$+"
                           ":RETURN
2990 A%=0:YZ$=LEFT$(Y$,1):IFYZ$="$"ORYZ$>"/"ANDYZ$<":"THEN3010
2991 YZ$=LEFT$(Y$,1):LH%=YZ$=">"ORYZ$="<":YA$=MID$(Y$,1-LH%)
2992 YZ$=LEFT$(YA$,1):IFYZ$="$"ORYZ$>"/"ANDYZ$<":"THENHE$=YA$:GOTO2994
2993 SL#=YA#:F%=0:GOSUB4500:HE#="#"+HE#:IFF%THENFL#(0)=FL#(2)
:FL$(2)=" "
2994 A$=HE$:GOSUB3100:IFA>LOANDLH%=OTHENA=0:FL$(1)="0"
2995 IFLEFT$(Y$,1)=">"THENA=INT(A/HI)
2996 IFLEFT$(Y$,1)="<"THENA=A-INT(A/HI)*HI
                                                                  n
2998 POKEAD, A: A%=1: GOSUB3240: PR$=PR$+RIGHT$("00"+A$,2)+"
: RETURN
3000 FL$(2)="S":F%=1:60T03030
3010 A$=Y$: GDSUB3100: IFF%THEN3030
3020 AD=A:GOSUB3240:PR$=A$+"
                              ....
                         ":RETURN
3030 PR$=PR$+"
3100 REM CONVERT HEX -> DEC
                              A$ -> A
3110 Z*=LEFT*(A*,1):IFZ*="*"THENA*=RIGHT*(A*,LEN(A*)-1):GOTO3150
3120 IFZ$<"0"ORZ$>"9"THENFL$(2)="S":F%=1:RETURN
3130 A=VAL(A$): IFA>655350RA<OTHENFL$(2)="0":F%=1
3140 RETURN
3150 A=0:L%=LEN(A$):IFL%>4THENF%=1:FL$(2)="L":RETURN
3200 FORI=1TOL%: AA%=ASC(MID$(A$,I))-48
3210 IFAA%<00RAA%>9THENIFAA%<170RAA%>22THENF%=1:FL$(2)="S":RETURN
3220 IFAA%>9THENAA%=AA%-7
3230 A=A+AA%*16↑(L%-I):NEXT:RETURN
3240 AH%=A/HI:AL%=A-AH%*HI:A$=A$(AH%/16)+A$(AH%AND15)+A$(AL%/16)
+A$ (AL%AND15)
```

```
3250 RETURN
4000 DIMLB$(349),HE$(349),ML$(349):HA=AD:REM CONSTRUCT ADDRESS LIST
4010 FORI=0T0349:LB$(I)="
                            ":HE$(I)="0000":ML$(I)=" ":NEXT
4020 DP$=DD$+":"+SN$+".SRC"
4030 OPEN8,DG.0,OP$
4040 GET#8,A$,A$:LL%=349
4050 IFST<>OTHENCLOSE8:END
4060 GDSUB2000:PRINTCHR$(145), ZN$:IFLN$=""DRLEFT$(LN$,1)=" "THEN4210
4070 X%=ASC(LEFT$(LN$,1)):IFX%<650RX%>90THEN4210
4080 GOSUB4100:GOT04130
                        ",5):REM GENERATE HASH CODE
4090 LN#=LEFT#(LN#+"
4100 HC=0:FORI=1T05
4110 HC%=ASC(MID#(LN#,I,1)):HC=HC+(HC%/10-INT(HC%/10))*10*(6-I):NEXTI
4120 HC%= (HC/307-INT (HC/307)) *300: RETURN
4130 A=HA:GOSUB3240
4140 IFLB$(HC%)<>"
                       "THEN4180
4150 LB$ (HC%) =LN$: HE$ (HC%) =A$: IFHC%>UL%THENUL%=HC%
4160 IFHC%<LL%THENLL%=HC%
4170 GDTD4210
4180 IFLB$(HC%)=LN$THENML$(HC%)="M":GOT04210
4190 HC%=HC%+1: IFHC%<350THEN4140
4200 PRINT"SYMBOL TABLE FULL":CLOSE8:END
4210 IFX$=".EN"THENCLOSE8:RETURN
4220 XX$=LEFT$(X$,1):IFXX$="."ORXX$="*"ORXX$="="THENGOSUB2700:HA=HA+A%
:00104060
4230 F%=0:XX$=LEFT$(X$,3):FORJ=OTONN7:IFXX$<>MN$(J)THENNEXT:GOT04270
4240 GDSUB2400
4250 IFT%(J,T%)>=OTHEN4280
4260 IFT%=5ANDT%(J,9)>=0THENT%=9:GDT04280
4270 F%=1:HA=HA+1:G0T04060
4280 HA=HA+L%(T%):G0T04060
              ******** SEARCH FOR LABEL
4500 REM
4510 X%=ASC(LEFT$(SL$.1)):IFX%<650RX%>90THENFL$(2)="S":F%=1:HE$="0000"
: RETURN
4520 IFLEN(SL#)>5THENFL#(2)="L"
4530 SV$=LN$:LN$=SL$:G0SUB4090:SL$=LN$:LN$=SV$
4540 IFLB$(HC%)="
                      "ORHC%>UL%THENFL$(2)="U":F%=1:HE$="0000":RETURN
4550 IFLB#(HC%)<>SL#THEN4580
4560 HE$=HE$(HC%): IFML$(HC%)<>" "THENFL$(2)=ML$(HC%)
4570 RETURN
4580 HC%=HC%+1:GOT04540
4590 Y1#="":Y2#="":I=1:REM DIVIDE Y# INTO Y1# AND Y2#
4600 IFMID$(Y$,I,1)<>","THENY1$=Y1$+MID$(Y$,I,1)
4610 IFI>LEN(Y$) THENF%=1: RETURN
4620 IFMID$(Y$,I,1)<>","THENI=I+1:GOTD4600
4630 I=I+1: IFI>LEN(Y$) THENF%=1: RETURN
4640 Y2$=Y2$+MID$(Y$,I,1):IFI=LEN(Y$)THENF%=0:RETURN
4650 I=I+1:GOT04640
5000 READNN%: HI=256:L0=255
5010 DIM A$(15),MN$(NN%),T%(NN%,12),L%(12),FL$(3),NP$(3)
5020 FORI=0T015:READA#(I):NEXT
5030 NP$(1)="00
                        ":NP$(2)="00 00
                                            ":NP$(3)="00 00 00 "
5040 FORI=OTD12:READL%(I):NEXT
5050 FORJ=OTONN%:READMN#(J):FORJJ=OTO12:READA#:IFA#="-1"THENA=-1
:60105070
5060 A=0:FORI=1T02:X=ASC(RIGHT$(A$,I))-48:X=X+(X>9)*7:A=A+X*16↑
(I-1):NEX1
5070 T%(J,JJ)=A:NEXT:NEXT:RETURN
6000 DATA 55 :REM NUMBER OF MNEMONICS
6010 DATA 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
6020 DATA 1,2,2,2,2,3,3,3,1,2,2,2,3
7000 DATA ADC, -1, 69, 65, 75, -1, 60, 70, 79, -1, -1, 61, 71, -1
```

7010 DATA AND,-1,29,25,35,-1,2D,3D,39,-1,-1,21,31,-1
7020 DATA ASL,0A,-1,06,16,-1,0E,1E,-1,-1,-1,-1,-1,-1
7030 DATA BCC, -1, -1, -1, -1, -1, -1, -1, -1, -1, 90, -1, -1, -1
7040 DATA BCS,-1,-1,-1,-1,-1,-1,-1,-1,-1,B0,-1,-1,-1
7050 DATA BEQ,-1,-1,-1,-1,-1,-1,-1,-1,-1,F0,-1,-1,-1
7060 DATA BMI,-1,-1,-1,-1,-1,-1,-1,-1,-1,30,-1,-1,-1
7070 DATA BIT,-1,-1,24,-1,-1,2C,-1,-1,-1,-1,-1,-1,-1
7080 DATA BNE,-1,-1,-1,-1,-1,-1,-1,-1,-1,DO,-1,-1,-1
7070 DATA BPL,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,0,-1,-1,-1 7100 DATA BRK,-1,-1,-1,-1,-1,-1,-1,-1,00,-1,-1,-1,-1
7100 DATA BRK, -1, -1, -1, -1, -1, -1, -1, -1, 00, -1, -1, -1, -1
7110 DATA BVC, -1, -1, -1, -1, -1, -1, -1, -1, -1, 50, -1, -1, -1
7120 DATA BVS, -1, -1, -1, -1, -1, -1, -1, -1, -1, 70, -1, -1, -1
7130 DATA CLC, -1, -1, -1, -1, -1, -1, -1, 18, -1, -1, -1, -1
7140 DATA CLD,-1,-1,-1,-1,-1,-1,-1,-1,DB,-1,-1,-1,-1 7150 DATA CLI,-1,-1,-1,-1,-1,-1,-1,58,-1,-1,-1,-1
7150 DATA CLI,-1,-1,-1,-1,-1,-1,-1,-1,58,-1,-1,-1,-1
7160 DATA CLV, -1, -1, -1, -1, -1, -1, -1, -1, B8, -1, -1, -1, -1
7170 DATA CMP,-1,C9,C5,D5,-1,CD,DD,D9,-1,-1,C1,D1,-1
7180 DATA CPX,-1,E0,E4,-1,-1,EC,-1,-1,-1,-1,-1,-1,-1
7190 DATA CPY,-1,C0,C4,-1,-1,CC,-1,-1,-1,-1,-1,-1,-1
7170 DATA DEC. 1. 1. C/ $D/$ 1. CE DE -1111111.
7200 DATA DEC, -1, -1, C6, D6, -1, CE, DE, -1, -1, -1, -1, -1, -1
7210 DATA DEX,-1,-1,-1,-1,-1,-1,-1,CA,-1,-1,-1,-1
7220 DATA DEY,-1,-1,-1,-1,-1,-1,-1,-1,88,-1,-1,-1,-1
7230 DATA EDR,-1,49,45,55,-1,4D,5D,59,-1,-1,41,51,-1
7240 DATA INC,-1,-1,E6,F6,-1,EE,FE,-1,-1,-1,-1,-1,-1
7250 DATA INX, -1, -1, -1, -1, -1, -1, -1, -1, E8, -1, -1, -1, -1
7260 DATA INY, -1, -1, -1, -1, -1, -1, -1, -1, CB, -1, -1, -1, -1
7270 DATA JMP,-1,-1,-1,-1,4C,-1,-1,-1,-1,-1,-1,-1,6C
7270 DATA JMP,-1,-1,-1,-1,-1,4C,-1,-1,-1,-1,-1,-1,-4C 7280 DATA JSR,-1,-1,-1,-1,-1,20,-1,-1,-1,-1,-1,-1,-1,-1
7290 DATA LDA, -1, A9, A5, B5, -1, AD, BD, B9, -1, -1, A1, B1, -1
7300 DATA LDX, -1, A2, A6, -1, B6, AE, -1, BE, -1, -1, -1, -1, -1
7310 DATA LDY,-1,A0,A4,B4,-1,AC,BC,-1,-1,-1,-1,-1,-1
7320 DATA LSR,4A,-1,46,56,-1,4E,5E,-1,-1,-1,-1,-1,-1
7330 DATA NOP, -1, -1, -1, -1, -1, -1, -1, -1, EA, -1, -1, -1, -1
7340 DATA ORA,-1,07,05,15,-1,0D,1D,17,-1,-1,01,11,-1
7350 DATA PHA,-1,-1,-1,-1,-1,-1,-1,48,-1,-1,-1
7360 DATA PHP,-1,-1,-1,-1,-1,-1,-1,-1,08,-1,-1,-1,-1
7370 DATA PLA,-1,-1,-1,-1,-1,-1,-1,-1,68,-1,-1,-1,-1
7380 DATA PLP,-1,-1,-1,-1,-1,-1,-1,28,-1,-1,-1,-1
7390 DATA RDL, 2A, -1, 26, 36, -1, 2E, 3E, -1, -1, -1, -1, -1, -1
7400 DATA ROR, 6A, -1, 66, 76, -1, 6E, 7E, -1, -1, -1, -1, -1, -1
7410 DATA RTI,-1,-1,-1,-1,-1,-1,-1,40,-1,-1,-1,-1
7420 DATA RTS, -1, -1, -1, -1, -1, -1, -1, -1, 60, -1, -1, -1, -1
7430 DATA SBC,-1,E9,E5,F5,-1,ED,FD,F9,-1,-1,E1,F1,-1
7440 DATA SEC,-1,-1,-1,-1,-1,-1,-1,-1,38,-1,-1,-1,-1
7450 DATA SED,-1,-1,-1,-1,-1,-1,-1,-1,F8,-1,-1,-1,-1
7460 DATA SEI,-1,-1,-1,-1,-1,-1,-1,-1,78,-1,-1,-1,-1
7470 DATA STA,-1,-1,85,95,-1,80,90,99,-1,-1,81,91,-1
7480 DATA STX,-1,-1,86,-1,96,8E,-1,-1,-1,-1,-1,-1,-1
7490 DATA STY,-1,-1,84,94,-1,8C,-1,-1,-1,-1,-1,-1,-1
7500 DATA TAX,-1,-1,-1,-1,-1,-1,-1,AA,-1,-1,-1,-1
7510 DATA TAY,-1,-1,-1,-1,-1,-1,-1,-1,AB,-1,-1,-1,-1
7520 DATA TSX,-1,-1,-1,-1,-1,-1,-1,-1,BA,-1,-1,-1,-1
7550 DATA TYA,-1,-1,-1,-1,-1,-1,-1,-1,98,-1,-1,-1,-1

Description of the 6510 assembler and the important variables.

- 100 190 Display title, read source file name into \$SN, prompt for assembly listing. Variable DG is set to the device number for listing depending on the answer. The variable PM determines if the listing is wanted or not. Call routine to initialize the variables with GOSUB 5000.
- 200 460 Main loop of the program. Line 210 performs pass l as a subroutine (GOSUB 4000). Source program file opened for reading from disk. If listing is not required, display only the line number \$2N (line 250). Variable for printer output, PR\$, is constructed. Line 320 checks for legal instructions. Set error flag if illegal instruction and place BRK instruction at that location. Line 350 determines addressing mode (GOSUB 2400).

Determine direction of branch for relative addressing mode. Call subroutine from line 360 to build string for printing the listing (depending on addressing mode and length of instruction). Write generated code to memory from line 370. Increment program counter in line 380. Print listing in lines 400 thru 460. If error is found, increment error counter in line 420. Display complete assembler source statement in line 450.

- 500 520 Handle one-byte instructions. Variable A% is set to the number of bytes and the instruction code is determined by using T%. A negative value indicates that this instruction cannot use this addressing mode. In this case, branch to 1510, to insert a BRK instruction (zero) instead. Otherwise, convert the opcode to hex and place in the print string.
- 600 740 Handle two-byte instructions. Determine opcode in line 610. Place opcode in print string in line 620. Check for immediate addressing, operators < and > and zero-page addressing (denoted by "*"). Determine if operand is number (hex or decimal) in line 660. If not, get value of the label in line 670 (GOSUB 4500). Convert value of operand to hex. Modify the value according to the operators < and > in line 700 and 710. Range check for value greater than 255 in line 720. Insert value in memory and add to the print string.
- 800 890 Handle three-byte instructions similar to twobyte instructions above. Calculate offset and check for legal address range in line 970. If

illegal, display "R" (range) error and set offset to zero. Convert negative values to two's complement in line 980. Insert the value in memory and add to print string.

1000 - 1420 Execution is transferred here when the assembly is done. Display last line of assembly. Prompt user to save generated code to disk. If yes, setup filename, starting and ending addresses call operating system SAVE routine with SYS. Display range and length of the generated code. Prompt for symbol table display. Sort into alphabetical sequence in lines 1200-1400.

The following are the subroutines which are called from the main routine and perform such operations as number conversion.

- 1500 1520 Output one or two zero bytes if an error was detected during the assembly.
- 1600 1640 Determine if first field is a mnemonic for an instruction or a label. If it is an instruction, assign to variable I the index of that instruction in the assembler's internal tables.
- 2000 2300 Read a source program line from disk and separate into line number, label, instruction mnemonic, operand, and comments. The routine at 2300 reads one byte from disk into the variable Z\$. Flag FF% is set if the byte is zero (end-ofline marker). The first two bytes, which contain the link address, are not used. If both are zero, however, the end of the program has been reached and ".EN" in indicated. Otherwise, the line number is obtained from the next two bytes. Find next field by searching for first blank or the end-of-line. If a semicolon is found, the text following is assigned to the variable as comments. Otherwise, the variable ZN\$ contains the line number, LN\$ contains the label name, X\$ contains the instruction mnemonic, Y\$ contains the operands, and RM\$ contains the comments.
- 2400 2460 Determines the addressing mode of an instruction. Check for characters "(", ")", "," and "X" and "Y". Immediate addressing mode is recognized by "#", and zero-page addressing by "*" (variable ZP, line 2510). Addressing mode is indicated by variable T% as value between zero and twelve. A negative value indicates an illegal addressing mode.

- 2700 2820 Handles the pseudo-instructions "=", "=*", and ".BY". Called during pass 1 and is used for such things as label definition.
- 2900 2998 Handles the same instructions as the previous routine, but for pass 2. This routine places the codes for ".BY" commands in memory.
- 3000 3030 Calls the following routines for number conversion and is used to initialize the print string with the address of the program counter.
- 3100 3230 Convert a hex number in A\$ to a decimal number in A.
- 3240 3250 Convert a decimal number in A to a hex number in A\$. AL% and AH% contain the low and high bytes, respectively.
- 4000 4280 Perform pass 1 of the assembly. Performs label searching and assigning their values. Also displays the line numbers (line 4060). A hash-code procedure is used for symbol table to speed searching using variable LB\$(). The corresponding hex code is placed in HE\$(). The length of each instruction is determined from the addressing mode, so that the labels can be assigned the correct values. Check for duplicate labels. Increment the program counter after the determining the address mode T% using the field L%() with the corresponding length of each address mode.
- 4500 4650 Called during pass 2 to determine the value of the label passed in SL\$. If the label is not found, an error flag is set, otherwise the hex value is returned in HE\$.
- 5000 5070 Initialize all variables from the following DATA statements.
- 6000 7550 DATA statements for the converting from decimal to hex, instruction lengths for different addressing modes, instruction mnemonics and corresponding operation codes and allowable addressing modes.

The following describe the usage of the major variables of the assembler.

SN\$ Contains the name of the source program (without suffix ".SRC"). The machine code produced is saved under the same name, with the suffix ".OBJ". DD\$ Contains the drive number. Contains device number of the output device for PG the listing; 3 = screen, 4 = printer. ΡM Flag for ignoring printer output (=1). Α actual address value AD immediate program counter during the assembly ZN\$ line number being processed LN\$ label name X\$ instruction mnemonic ΥŚ operand RM\$ comments address mode (zero to twelve) Тზ offset for storage of generated code (0=not used) OF A۶ length of instruction AŚ hex representation of the actual address A SL\$ label to search for. Must contain the name of the label being searched for when calling 4500. HES hex value of the label constant 255 LO ΗI constant 256 address offset (difference) for relative add-DF ressina BS€ error counter number of labels per line for output of symbol MX table

HI\$ "greater" label name for sorting

PR\$ string for output of a print line in the listing

MN\$ mnemonic

Z\$ character from disk

NN% number of mnemonics (op codes)

X% ASCII code

ZP flag for zero-page addressing

HA value of a label (during pass 1)

F%, FF% error flags

HC, HC% hash code

FL\$(3) error codes

LB\$(349) table of labels

HE\$(349) table of corresponding values for labels (in hex code)

T%(55,12) table of opcodes and address modes. The first index is the instruction word, the second index is the addressing mode.

MN\$(55) table of instruction words in alphabetical order.

6. A Single-Step Simulator for the 6510

If you are still unclear as to how certain machine language instructions work, here's a tool that lets you observe the see the results of each instruction right on the screen. The tool is called a SIMULATOR. As the name implies, it simulates the operation of the 6510 microprocessor. When you RUN the SIMULATOR, it displays the actions and results of an instruction as if that instruction were really being executed.

The SIMULATOR displays the following screen:

 PC
 AC XR YR SR SP
 NV-BDIZC

 0000
 00
 00
 20
 FF
 00100000

Here are the abbreviation used in the display:

PC	program counter
AC	accumulator
XR	X register
YR	Y register
SR	status register
SP	stack pointer
N	negative flag
V	overflow flag
В	break flag
D	decimal flag
I	interrupt flag
Z	zero flag
С	carry flag

Beneath the abbreviations are the contents of each register. You can change the contents of any register or flag from the

keyboard. To change the contents, press the appropriate letter as outlined below. If you press the letter of a flag, then that flag in "inverted". If you press the letter of a register, the screen prompts you for the change. Key in the new value using a legal hexadecimal value and press the <RETURN> key. The new value replaces the old and the display is updated with the new contents. Below is a description of the keys and their respective contents:

- P Displays the current contents of the program counter. After changing it, the new value is displayed and the instruction located at this new address is disassembled and also displayed.
- A The contents of the accumulator are displayed. You can alter the contents by keying in the new value. After pressing <RETURN>, the new value appears in the register display.
- X The contents of the X-register are displayed. You can alter the contents by keying in the new value. After pressing <RETURN>, the new value appears in the register display.
- Y The contents of the Y-register are displayed. You can alter the contents by keying in the new value. After pressing <RETURN>, the new value appears in the register display.
- S The contents of the stack pointer are displayed. You can alter the contents by keying in the new value. After pressing <RETURN>, the new value of the stack pointer appears in the register display.

The status register SR cannot be changed directly. Instead, you have to change the individual flags which comprise the status register. If a flag is changed, the value of the

status register in the display is automatically changed as well.

- N By pressing N, the value of the Negative flag is inverted: 1 becomes 0 and vice versa. At the same time, the contents of the status register are changed correspondingly, as already mentioned.
- V By pressing V, the value of the oVerflow flag is inverted as above.
- B By pressing B, the value of the Break flag is inverted as above.
- D By pressing D, the value of the Decimal flag is inverted as above.
- I By pressing I, the value of the Interrupt flag is inverted as above.
- Z By pressing Z, the value of the Zero flag is inverted as above.
- C By pressing C, the value of the Carry flag is inverted as above.

The most important function of the simulator is performed by pressing the space bar. By pressing the space bar, the machine language instruction pointed to by the program counter is executed. As the name simulator implies, this instruction is not directly executed by the processor. Instead it is simulated by the program. The register contents and flags are altered just as they would be if the microprocessor had executed the instruction. After pressing the space bar, the new contents of the registers and flags are displayed; the next instruction to be executed is

disassembled and displayed; the new value of the program counter is displayed.

Below is an example, simulating the execution of a routine contained in the operating system. First set the program counter to \$A81D by pressing **P** and entering A81D as the new contents of the program counter. The following is displayed:

 PC
 AC
 XR
 YR
 SR
 SP
 NV-BDI2C

 A81D
 00
 00
 00
 20
 FF
 00100000

 A81D
 38
 SEC

Press the space bar to simulate the execution of this instruction. The result appears below:

 PC
 AC XR YR SR SP
 NV-BDIZC

 A81E
 00
 00
 02
 1
 FF
 00100001

 A81E
 A5
 2B
 LDA \$2B
 LDA \$2B
 LDA \$2B

After the instruction is executed, the carry flag is set. The value of the status register is automatically changed to \$21. The program counter is incremented by one to \$A81E.

This location contains an LDA instruction. Press the space bar to execute this instruction. Here's what you'll see on the screen:

 PC
 AC XR YR SR SP
 NV-BDIZC

 A820
 01
 00
 02
 1
 FF
 00010001

 A820
 E9
 01
 SBC #\$01
 SBC #\$01

The accumulator has been loaded with the contents of memory location \$2B, which contains the value 1. Notice that the N and Z flags remain clear because the value loaded was neither zero nor negative. The program counter now stands at \$A820, two bytes further. The instruction at this location is SBC #\$01 - subtract \$01 from the contents of the accumulator. Press the space bar again to see the simulated results of the SBC instruction:

 PC
 AC XR YR SR SP
 NV-BVIZC

 A822
 00
 00
 02
 FF
 00100011

 A822
 A4
 2C
 LDY \$2C
 LDY \$2C

After the value \$01 is subtracted from the contents of the the accumulator (also 1), the result appears in the accumulator. Something happened to the flags. The zero flag is set, indicating that the result of the operation of is zero. The carry flag is also set. This tells us that underflow did not occur during the subtraction. The next instruction at address \$A822 is LDY \$2C. Press the space bar to get the following display:

 PC
 AC
 XR
 YR
 SR
 SP
 NV-BDIZC

 A8 24
 00
 00
 08
 21
 FF
 00100001

 A8 24
 B0
 01
 BCS
 \$A8 27

The Y-register contains \$08 and the zero flag is cleared. The instruction at address \$A824 is a conditional branch. Can you tell beforehand if this branch will be executed? The branch will take place if the carry flag is set. Since the carry flag is set, the branch will take place. Confirm this by pressing the space bar:

 PC
 AC XR YR SR SP
 NV-BDIZC

 A827
 00
 00
 08
 21
 FF
 00100001

 A827
 85
 41
 STA \$41

The program counter is now pointing to \$A827, not \$A826 has the carry flag been clear. Notice that the flags are not changed by the branch instruction. The next instruction stores the contents of the accumulator in memory location \$41. Press the space bar again:

 PC
 AC XR YR SR SP
 NV-BDIZC

 A829
 00
 00
 08
 21
 FF
 00100001

 A829
 84
 42
 STY \$42

The STA instruction does not change any of the flags. The next instruction, STY \$42, also has no affect on the flags. Press the space bar:

 PC
 AC XR YR SR SP
 NV-BDIZC

 A82B
 00
 00
 08
 21
 FF
 00100001

 A82B
 60
 RTS
 RTS
 RTS
 RTS
 RTS

The next instruction is an RTS. You can stop the simulator

here. The great advantage of a simulator is that you can see exactly what each instruction does at your own pace. You can change the contents of the registers and flags at your discretion before the execution of each instruction to see how the processor reacts. You can also set the program counter back to the same instruction after its execution and re-execute it again with different registers or flag values. It becomes a great learning tool.

A simulator also allows you to advance the program counter to the next instruction without executing the previous one. You can do this by pressing the "cursor down" key. For example, if you come to a instruction such as STA or INC which overwrites important operating system areas of memory, you risk **crashing** your computer.

For this reason, instructions affecting memory are normally not executed. If these types of instructions are necessary to test your program correctly, (for example if your program depends on the contents of a specific memory location), then you can specify that the program actually execute such commands. To do this, press the E key. The prompt ACTUAL SIMULATION? Y appears on the screen. If you press <RETURN>, then all instructions which write to memory are actually executed. If you respond with N(o) instead of Y(es), you can turn this option off.

The simulator also allows you to view and alter the contents

of memory location. To do this, press the M key. The prompt ADDRESS ?**** appears on the screen. Enter the desired memory location and press <RETURN>. The current contents of that location are displayed on the screen. You can press <RETURN> to leave the contents unaltered, or key in a new value to change the contents. Changes are accepted only if ACTUAL SIMULATION was previously selected with E.

The next example describes the operation of the stack. The BRK instruction is used to illustrate the stack operation. Start the simulator by typing **RUN**. Enter **E** to select actual simulation mode, and set the program counter to \$0002. Next change the contents of memory location \$0002 to \$00. \$00 is the instruction code for the BRK instruction. Everytime a BRK instruction is executed, the simulator's B flag is set. The following appears on the screen:

PC AC XR YR SR SP NV-BDIZC 0002 00 00 00 20 FF 00100000 0002 00 BRK

To better illustrate the stack operations, place unique values into the accumulator, X and Y registers. You can do this by press the A, X and Y keys and typing in new values for the corresponding registers. We have altered the contents of the registers to the values displayed on the next page:

 PC
 AC XR YR SR SP
 NV-BDIZC

 0002
 22
 44
 88
 20
 FF
 00100000

 0002
 00
 BRK
 BRK

If there is no BRK instruction at address \$0002, then press M and enter the address \$0002. The contents of memory location 2 appears. Alter the contents to \$00 (the operation code for the BRK instruction). Now the BRK instruction is displayed on the screen as shown above. Press the space bar and observe the display:

 PC
 AC XR YR SR SP
 NV-BDIZC

 FF48
 22
 44
 88
 34
 FC
 00110100

 FF48
 48
 PHA
 PHA
 PHA
 PHA
 PHA

When a BRK instruction is encountered, the processor takes several actions:

- 1) The B and I flags are set.
- 2) The contents of the program counter (two bytes) and the status register are saved onto the stack.
- The stack pointer is decremented by three, in this case from \$FF to \$FC.
- 4) The program counter is loaded with the contents of addresses \$FFFE and \$FFFF (which contains \$FF48). \$FFEE and \$FFFF contain the BRK vector which is the address of a routine which always handles a BRK interrupt.

The instruction at this location is PHA. This instruction places the contents of the accumulator onto the stack. Press the space bar again. You will see this:
 PC
 AC XR YR SR SP
 NV-BDIZC

 FF49
 22
 44
 88
 34
 FB
 00110100

 FF49
 8A
 TXA
 TXA
 TXA
 TXA
 TXA

The contents of the accumulator is placed on the stack and the stack pointer is automatitcally decremented. Next the contents of the X-register is copied to the accumulator with the TXA instruction. Press the space bar again.

 PC
 AC
 XR
 YR
 SR
 SP
 NV-BDIZC

 FF4A
 44
 44
 88
 34
 FB
 00110100

 FF4A
 48
 PHA
 FA
 FA
 FA
 FA
 FA

The flags are not changed because the value in the Xregister is neither zero nor negative. The PHA instruction pushes the contents of the accumulator on the stack again. Press the space bar once more.

PC AC XR YR SR SP NV-BDIZC FF4B 44 44 88 34 FA 00110100 FF4B 98 TYA

Notice that stack pointer is again decremented. Now the contents of the Y-register is placed in the accumulator with the TYA instruction. This time, however, the N flag is set because the value in the Y register is negative (greater than \$7F). This is displayed:

 PC
 AC
 XR
 YR
 SR
 SP
 NV-BDIZC

 FF4C
 88
 44
 88
 B4
 FA
 10110100

 FF4C
 48
 PHA

The PHA instruction pushes the contents of the accumulator onto the stack again. Now here's a new instruction.

 PC
 AC XR YR SR SP
 NV-BDIZC

 FF4D
 88
 44
 88
 B4
 F9
 10110100

 FF4D
 BA
 TSX
 TSX
 TSX
 TSX
 TSX

The TSX instruction transfers the contents of the status register to the X-register.

Notice that you have saved all of the registers onto the stack in this order: Program Counter and Status register (saved by BRK), Accumulator, X-register and Y-register.

Now let's simulate the instructions at a different part of the operating system. These instructions restore the registers that we just saved so we can further see the operation of the stack.

Before simulating these instructions, set the register values to zero. Then you can observe as the values change to see how the register contents are restored. You can do this by altering the **A**, **X** and **Y** registers to zero.

Next set the program counter to \$EA81. The display should look like this:

 PC
 AC XR YR SR SP
 NV-BDIZC

 EA81
 00
 00
 00
 B4
 F9
 10110100

 EA81
 68
 PLA
 PLA
 PLA
 PLA
 PLA

The machine language routine at \$EA81 restores all of the registers and continues execution at the point just before the BRK interrupt occurred.

When the PLA instruction is executed, the data at the top of the stack is placed into the accumulator. The data is \$88, which is the original contents of the Y-register above.

 PC
 AC XR YR SR SP
 NV-BDIZC

 EA82
 88
 00
 00
 B4
 FA
 10110100

EA82 A8 TAY

This instruction copies the value in the accumulator to the Y-register:

 PC
 AC XR YR SR SP
 NV-BDIZC

 EA83
 88
 00
 88
 B4
 FA
 10110100

EA83 68 PLA

Now pull the next value from the stack into the accumulator with the PLA instruction and transfer it to the X-register. Press the space bar to see the results:

PC AC XR YR SR SP NV-BDIZC EA84 44 00 88 34 FB 00110100

EA84 AA TAX

Notice that each time a value is taken off the stack, the stack pointer is incremented by one. Press the space bar

again:

 PC
 AC XR YR SR SP
 NV-BDIZC

 EA85
 44
 44
 88
 34
 FB
 00110100

EA85 68 PLA

The original contents of the accumulator are now pulled from the stack. Press the space bar. The next display looks like this:

 PC
 AC XR YR SR SP
 NV-BDIZC

 EA86
 22
 44
 88
 34
 FC
 00110100

 EA86
 40
 RTI
 RTI
 RTI
 RTI

All of the registers have been restored and the stack pointer again points to the value to which it pointed after the BRK instruction. When using the stack, the important thing to keep in mind is to pull the values off of the stack in the reverse order that you pushed them on. The "last in-first out" principle characterizes this procedure.

Now we can execute the RTI instruction which returns us to the original interrupted program.

 PC
 AC XR YR SR SP
 NV-BDIZC

 0005
 22
 44
 88
 20
 FF
 00010000

 0005
 91
 B3
 STA (\$B3),Y

The status register is returned to its original value and

the program counter points to the instruction after the BRK instruction.

The simulator is the ideal tool for testing your programs. Here you can see, step by step, if the processor really does what you had intended. Debugging, always a tricky procedure, is much easier with the simulator. Beginners, who are not be acquainted with all of the addressing modes or who may have problems understanding the flag settings, find the simulator especially helpful. The listing of the simulator program appears on the next pages. Following the listing is a short description of the individual routines and the variables used by the program.

. . .

100 PRINT" (CLR) (WHT) (C/DN) *** 6510 SINGLE-STEP SIMULATOR" 110 PRINT" ------120 PRINT" 130 PRINT" 130 PRINT" | PC | AC XR YR SR SP INV-BDIZC " 140 PRINT" | | 1" 1 ۲ د. 150 PRINT" L____ ____ ____ ------160 FF=255:HI=256:UL=2+16:SC=2+15-1:SP=FF 170 DIM MN\$(FF), OP(FF), AD(FF), SP(FF), H\$(15) 180 FORJ=OT015:READH\$(J):NEXT 190 FORJ=OTOFF:READMN\$(J),OP(J),AD(J):NEX[200 REM DISPLAY REGISTERS 210 PRINT" (HOME) (C/DN) (C/DN) (C/DN) (C/DN) (C/RT) (C/RT) (C/RT) (C/RT) (C/RT) (C/R1)"; 215 IFPC>=ULTHENPC=PC-UL 220 A=PC: GOSUB2290: PRINT" (C/RT) (C/RT) "; 230 A=AC: GOSUB2320: PRINT" (C/RT) "; 240 A=XR:GOSUB2320:PRINT"(C/RT)" : 250 A=YR:GOSUB2320:PRINT"{C/RT}"; 255 GOSUB900: REM SR 260 A=SR: GOSUB2320: PRINT" (C/RT)"; 270 A=SP:GOSUB2320:PRINT" (C/RT) (C/RT)"; 280 PRINTCHR#(48+N); 290 PRINTCHR\$ (48+V): 300 PRINT"1"; 310 PRINTCHR\$(48+B); 320 PRINTCHR\$(48+D): 330 PRINTCHR\$(48+I); 340 PRINTCHR\$(48+Z); 350 PRINTCHR#(48+C) 360 PRINT" (C/DN) (C/DN) (C/DN) (C/DN) (C/LE) (C/LE) (C/LF) ": 400 GETT\$: IFT\$=""THEN400 405 IF TS=" "THEN1100:REM SIMULATION 410 IFT#="P"THENPRINT"PC ";:A=PC:GOSUB2290:INPUT"(C/LF)(C/LF)(C/LF) (C/LF) (C/LF) "; A\$: GOSUB2380: PC=A 411 IFT\$="""THEN1000 420 IFT\$="A"THENT\$="AC": A=AC: GOSUB540: AC=A: G010200 430 IFT\$="X"THENT\$="XR":A=XR:GOSUB540:XR=A:GOT0200 440 IFT\$="Y"THENT\$="YR":A=YR:GOSUB540:YR=A:GOT0200 450 IFT\$="S"THENT\$="SP": A=SP: GOSUB540: SP=A: GOT0200 460 IFT\$="N"THENN=1-N:60T0200 470 IFT\$="V"HENV=1-V:60T0200 480 IFT\$="B"HENB=1-B:60T0200 490 IFT\$="D"THEND=1-D:GOT0200 500 IFT\$="I"THENI=1-I:GOT0200 510 IFT\$="Z"THENZ=1-Z:GOT0200 520 IFT\$="C"THENC=1-C:GOT0200 525 IFT\$="(C/DN)"THENS=P:E=P:PC=P:G0T01010 527 IFT\$="M"THEN3000 528 IFT\$="E"THEN3100 530 GOT0400 540 PRINTTS" "::GOSUB2320:INPUT" (C/LF) (C/LF) (C/LF) (C/LF) ":A\$:60102380 900 SR=N*128+V*64+32+B*16+D*8+I*4+Z*2+C:RETURN 910 N=SGN(SRAND128):V=SGN(SRAND64)::B=SGN(SRAND16):D=SGN(SRAND8) 920 I=SGN(SRAND4): Z=SGN(SRAND2): C=SRAND1: RETURN

980 N=SGN (ACAND128): Z=1-SGN (AC): REM FLAGS

990 PC=PC+1+L 1000 S=PC:E=PC 1010 PRINT" (HOME) (C/DN) (C/DN) (C/DN) (C/DN) (C/DN) (C/DN) (C/DN) " : GUSUB2040: GD1 0200 1100 A=0P (PEEK (PC)):L=0: IFA=0THEN990 1110 ONAGOTD1200,1210,1220,1230,1240,1250,1260,1270,1280,1290,1300, 1310,1320,1330 1115 A=A-14 1120 DNAGDTD1340,1350,1360,1370,1380,1370,1400,1410,1420,1430,1440, 1450,1460,1470 1125 A=A-14 1130 DNAGDTD1480,1490,1500,1510,1520,1530,1540,1550,1560,1570,1580, 1590,1600,1610 1135 A=A-14 1140 DNAGDT01620,1630,1640,1650,1660,1670,1680,1690,1700,1710,1720, 1730,1740,1750 1150 GOT0200 1200 IFDTHEN1205:REM ADC 1201 GOSUB1900: V=1-SGN (ACAND128): AC=AC+OP+C: C=- (AC>FF) 1202 AC=ACANDEF: N=SGN (ACAND128): V=VANDN: GOT0980 1205 GDSUB1900: AC=VAL (H\$ (AC/16) +H\$ (ACAND15)): DP=VAL (H\$ (OP/16) +H\$ (OPAND15)) 1206 AC=AC+OP+C:C=-(AC>99):IFAC>99THENAC=AC-100 1207 A\$=MID\$(STR\$(AC),2):GOSUB2390:AC=A:GOT0980 1210 REM AND 1211 GOSUB1900: AC=ACANDOP: GOT0980 1220 GOSUB1900: A=OP*2: C=- (A>FF): A=AANDFF: GOSUB1850 1221 IFAD(PEEK(PC))=4THENAC=AC*2:C=-(AC>FF):AC=ACANDFF:G0T0980 1223 N=SGN (OPANDFF): Z=1-SGN (OP): GOT0990 1230 REM BCC 1240 REM BCS 1241 FL=C:GOT01800 1250 REM BEQ 1251 FL=Z:GOT01800 1260 REM BIT 1261 GOSUB1900: N=SGN (OPAND128): V=SGN (OPAND64): Z=1-SGN (OPANDAC) :GOT0990 1270 REM BMI 1271 FL=N:60T01800 1280 REM BNE 1281 FL=1-Z:GOT01800 1290 REM BPL 1300 REM BRK 1301 PC=PC+2: IFPC>=ULTHENPC=PC-2 1302 PH=INT(PC/HI):PL=PC-PH*HI:SP(SP)=PH:SP=SP-1ANDFF:SP(S :SP=SP-1ANDFF 1303 B=1: I=1: GOSUB900; SP (SP) = SR: SP=SP-1ANDFF: PC=PEEK (45534) +HT+PEEK (A5535) 1304 GOT01000 1310 REM BVC 1311 FL=1-V:GOT01800 1320 REM BVS 1321 FL=V:GOT01800 1330 REM CLC 1331 C=0:GOT01800 1340 REM CLD 1341 D=0:GOT0990 1350 REM CLI 1351 I=0:G0T0990 1360 REM CLV 1361 V=0:60T0990 1370 REM CMP

1371 GOSUB1900: A=AC-OP 1372 N=SGN (AAND128): Z=- (A=0): C=- (A>=0): GOT0990 1380 REM CPX 1381 GOSUB1900: A=XR-OP: GOT01372 1390 REM CPY 1391 GOSUB1900: A=YR-OP: GOT01372 1400 REM DEC 1401 GOSUB1900:A=OP-1ANDFF:GOSUB1850 1402 GOT01442 1410 REM DEX 1411 XR=(XR-1)ANDFF:GOT01452 1420 REM DEY 1421 YR= (YR-1) ANDEF: GOT01462 1430 REM EOR 1431 GOSUB1900:A=0:FORJ=7T00STEP-1:EX=2+J:A=2+A-((OPANDEX)<> (ACANDEX)):NEX1 1432 AC=A: GOT0980 1440 REM INC 1441 GOSUB1900:A=OP+1ANDFF:GOSUB1850 1442 N=SGN(AAND128):Z=1-SGN(A):GOT0990 1450 REM INX 1451 XR=(XR+1)ANDFF 1452 Z=1-SGN(XR):N=SGN(XRAND128):G0T0990 1460 REM INY 1461 YR=(YR+1)ANDFF 1462 Z=1-SGN(YR):N=SGN(YRAND128):G0T0990 1470 REM JMP 1471 GOSUB1900: PC=AD: GOT01000 1480 REM JSR 1481 A=PC+2:PH=INT(A/HI):PL=A-PH*HI:SP(SP)=PH:SP=SP-1ANDFF:SP(SP)=PL :SP=SP-1ANDFF 1482 PC=PEEK(PC+1)+PEEK(PC+2)*HI:G0T01000 1490 REM LDA 1491 GOSUB1900: AC=OP: GOT0980 1500 REM LDX 1501 GOSUB1900: XR=OP: GOT01452 1510 REM LDY 1511 GOSUB1900: YR=OP: GOT01462 1520 REM LSR 1521 IFAD (PEEK (PC)) <>4THEN1524 1522 AC=AC/2 1523 C=-(AC<>INT(AC)):AC=ACANDFF:GOT0980 1524 GOSUB1900:A=OP/2:C=-(A<>INT(A)):A=AANDFF:GOSUB1850 1525 GOT01442 1530 REM NOP 1531 GOT0990 1540 REM ORA 1541 GOSUB1900: AC=ACOROP: GOT0980 1550 REM PHA 1551 SP(SP)=AC:SP=SP-1ANDFF:GOT0990 1560 REM PHP 1561 GOSUB900:SP(SP)=SR:SP=SP-1ANDFF:G070990 1570 REM PLA 1571 SP=(SP+1)ANDFF:AC=SP(SP):GDT0980:REM SET FLAGS 1580 REM PLP 1581 SP=(SP+1)ANDFF:SR=SP(SP):GOSUB910:GOT0990 1590 REM ROL 1591 IFAD (PEEK (PC)) = 4THENAC=AC*2+C: G0T01522 1592 GDSUB1900:A=DP*2+C:C=-(A>FF)

1593 A=AANDFF:GOSUB1850 1594 GOT01442 1600 REM ROR 1601 IFAD(PEEK(PC))=4THENAC=AC/2+128*C:GOT01523 1602 GOSUB1900:A=OP/2+128*C:C=-(A<>INT(A)):GOT01593 1610 REM RTI 1611 SP=SP+1ANDFF: SR=SP(SP): GOSUB910: GOT01621 1620 REM RTS 1621 SP=SP+1ANDFF:A=SP(SP):SP=SP+1ANDFF:PC=A+SP(SP)*HI:GOT0990 1630 IFDTHEN1635: REM SBC 1631 GOSUB1900; V=SGN (ACAND128) : AC=AC-OP-1+C: C=- (AC>=0) 1632 AC=ACANDFF:N=SGN(ACAND128):V=VAND1-N:GOT0980 1635 GDSUB1900: AC=VAL (H\$ (AC/16) +H\$ (ACAND15)): DP=VAL (H\$ (DP/16) +H\$ (OPAND15)) 1636 AC=AC-OP+C-1:C=-(AC>=0):IFAC<OTHENAC=AC+100 1637 A#=MID# (STR# (AC), 2): GOSUB2390: AC=A: GOT0980 1640 REM SEC 1641 C=1:GOT0990 1650 REM SED 1651 D=1:GOT0990 1660 REM SEI 1661 I=1:GOT0990 1670 REM STA 1671 GOSUB1900: A=AC: GOSUB1850 1672 GOT0990 1680 REM STX 1681 GOSUB1900: A=XR: GOSUB1850 1682 GOT0990 1690 REM STY 1691 GOSUB1900: A=YR: GOSUB1850 1692 GOT0990 1700 REM TAX 1701 XR=AC:GOT01452 1710 REM TAY 1711 YR=AC: GOT01462 1720 REM TSX 1721 XR=SP:GOT01452 1730 REM TXA 1731 AC=XR:GOT0980 1740 REM TXS 1741 SP=XR:GOT0990 1750 REM TYA 1751 AC=YR:GOT0980 1800 REM BRANCH COMMANDS 1810 IFFL=OTHENL=1:G0T0990 1820 GOSUB1985:GOT01000 1850 REM POKE 1870 IFAD<HIORAD>HI+FFTHEN1880 1875 SP(AD-HI)=A:RETURN 1880 IFESTHENPOKEAD,A 1885 RETURN 1900 REM GET OPERAND 1910 A=AD(PEEK(PC)) 1920 DNAGDSUB1930, 1935, 1940, 1945, 1950, 1955, 1960, 1965, 1970, 1975, 1980,1985,1990 1925 IFAD<HIORAD>HI+FFTHENRETURN 1927 OP=SP(AD-HI):RETURN 1930 AD=0:RETURN:REM IMPLIED 1935 AD=PC+1:OP=PEEK(AD):L=1:RETURN:REM # 1940 AD=PEEK(PC+1):OP=PEEK(AD):L=1:RETURN:REM ZERO-PAGE

1945 AD=0:RETURN:REM A 1950 AD=PEEK(PC+1)+HI*PEEK(PC+2):OP=PEEK(AD):L=2:RETURN 1955 AD=PEEK(PC+1)+XRANDFF:OP=PEEK(AD):L=1:RETURN 1960 AD=PEEK(PC+1)+YRANDFF:OP=PEEK(AD):L=1:RETURN 1965 AD=PEEK(PC+1)+HI*PEEK(PC+2)+XR:OP=PEEK(AD):L=2:RETURN 1970 AD=PEEK(PC+1)+HI*PEEK(PC+2)+YR:OP=PEEK(AD):L=2:RETURN 1975 AD=PEEK (PEEK (PC+1)) +HI *PEEK (PEEK (PC+1) +1ANDFF) +YR: OP=PEEK (AD) :L=1:RETURN 1980 AD=PEEK(PC+1)+XRANDFF:AD=PEEK(AD)+HI*PEEK(AD+1):OP=PEEK(AD) :L=1:RETURN 1985 A=PEEK(PC+1):A=A+HI*(A>127)+2+PC 1986 PC=INT(A/HI)*HI+((A+(A>SC)*UL)ANDFF):RETURN:REM RELATIVE 1990 AD=PEEK(PC+1)+HI*PEEK(PC+2):AD=PEEK(AD)+HI*PEEK(AD+1):OP=PEEK (AD): RETURN 2040 FORP=STOE: PRINT" "; 2050 A=P: GOSUB2290: REM ADDRESS 2060 PRINT" "::A=PEEK(P):GOSUB2320:PRINT" "::J=PEEK(P):OP=AD(J) 2070 DNDPGDSUB2350,2360,2360,2350,2370,2360,2360,2370,2370,2360,2360, 2360.2370 2080 PRINT" ":MN\$(J)" ": 2090 DNDPGDSUB2110,2120,2130,2140,2150,2160,2170,2180,2190,2200,2210, 2220,2240 2100 PRINT" ":NEXTP 2105 IFP>=ULTHENP=P-UL 2110 RETURN 2120 PRINT"#";:GOSUB2330:P=P+1:RETURN 2130 GOSUB2330: P=P+1: RETURN 2140 PRINT" A";:RETURN 2150 GOSUB2260: P=P+2: RETURN 2160 GOSUB2330:P=P+1:PRINT",X";:RETURN 2170 GOSUB2330:P=P+2:PRINT",Y";:RETURN 2180 GOSUB2260:P=P+2:PRINT",X";:RETURN 2190 GOSUB2260:P=P+2:PRINT",Y";:RETURN 2200 PRINT"(";:GOSUB2330:P=P+1:PRINT"),Y";:RETURN 2210 PRINT"(";:GOSUB2330:P=P+1:PRINT",X)";:RETURN 2220 A=PEEK(P+1):A=A+HI*(A>127)+2+P 2230 A=INT(A/HI)*HI+((A+(A>SC)*UL)ANDFF):PRINT"\$"::GOSUB2290 :P=P+1:REIURN 2240 PRINT" (";:GOSUB2260 2250 PRINT")";:P=P+2:RETURN 2260 PRINT"\$": 2270 A=PEEK(P+1)+HI*PEEK(P+2) 2280 REM HEX ADDRESS A 2290 HB=INT(A/HI):A=A-HI*HB 2300 PRINTH\$ (HB/16) H\$ (HBAND15); 2310 REM HEX BYTE A 2320 PRINTH\$ (A/16) H\$ (AAND15) :: RETURN 2330 PRINT"\$"; 2340 A=PEEK(P+1):GOT02320 2350 PRINT" "::RETURN 2360 GOSUB2340: PRINT" ";:RETURN 2370 GOSUB2340: PRINT" ":: A=PEEK (P+2): GOT02320 2380 IFASC(A\$)=42THENEND 2390 A=0:FORJ=1TOLEN(A\$):X=ASC(RIGHT\$(A\$,J))-48:X=X+(X>9)*7:A=A+X* (16+(J-1)):NEXT 2391 RETURN 3000 PRINT:PRINT" (C/DN) (C/DN) ":PRINT"ADDRESS: $\pm + + + + (C/LF) \{C/LF\}$ {C/LF} {C/LF} {C/LF} {C/LF} ":: INPUTA\$: GOSUB2380 3010 PRINT" (C/UP)",,:AD=A:OP=PEEK (AD):A=OP:GOSUB2320: INPUT" (C/LF) (C/LF) (C/LF) (C/LF)";A\$:GOSUB2380 ": 1FAD=PC 3020 GOSUB1850:PRINT" (C/UP) THEN1000 3030 6010200 3100 INPUT"ACTUAL SIMULATION Y(C/LF)(C/LF)";ES\$:ES=ES\$="Y" ":G0T0200 3110 PRINT" (C/UP)

.

10000	DATA 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
10010	DATA"BRK",11,1,"ORA",35,11,"???",0,1
10020	DATA"???".0.1."???".0.1."DRA".35.3
10030	DATA"???",0,1, [#] ???",0,1,"DŔA",35,3 DATA"ASL",3,3,"???",0,1,"PHP",37,1
10040	DATA"ORA".35.2."ASL".3.4."???".0.1
10050	DATA"ORA",35,2,"ASL",3,4,"????",0,1 DATA"????",0,1,"ORA",35,5,"ASL",3,5
10060	DATA"???".0.1."BPL".10.12."DRA".35.10
10070	DATA"222".0.1."222".0.1."222".0.1
10080	DATA"0RA" 35.6 "ASI" 3 6 "222" 0 1
10090	DATA"???",0,1, "BPL",10,12, "DRA",35,10 DATA"???",0,1, "BPL",10,12, "DRA",35,10 DATA"???",0,1,"???",0,1,"???",0,1 DATA"DRA",35,6, "ASL",3,6,"???",0,1 DATA"CLC",14,1,"DRA",35,9, "???",0,1
10100	DATA"222".0.1."222".0.1."DRA".35.8
10110	DATA"???",0,1,"???",0,1,"ÓRA",35,8 DATA"ASL",3,8,"???",0,1,"JSR",29,5
10120	DATA"AND",2,11,"???",0,1,"???",0,1
10130	DATA"BIT",7,3,"AND",2,3,"ROL",40,3
10140	DATA"???",0,1,"PLP",39,1,"AND",2,2
10150	DATA"ROL",40,4,"???",0,1,"BIT",7,5
10160	DATA"AND",2,5,"ROL",40,5,"???",0,1
10170	DATA PATH 9 12 "AND" 2 10 "222" 0 1
10180	DATA"BMI",8,12,"AND",2,10,"???",0,1 DATA"???",0,1,"???",0,1,"AND",2,6
10180	DATA BOLH 40 4 HOODH 0 1 HOEDH 4E 1
10200	DATA"ROL",40,6,"???",0,1,"SEC",45,1
10200	DATA"AND",2,9,"???",0,1,"???",0,1
10220	DATA"???",0,1,"AND",2,8,"ROL",40,8 DATA"???",0,1,"RTI",42,1,"EOR",24,11
10220	DATA"???",0,1,"???",0,1,"???",0,1
10230	DATA"EOR" 24 3 "LER" 33 3 "222" 0 1
10250	DATA"PHA" 34 1 "EAR" 24 2 "I SR" 33 4
10260	DATA"EOR",24,3,"LSR",33,3,"???",0,1 DATA"PHA",36,1,"EOR",24,2,"LSR",33,4 DATA"???",0,1,"JMP",28,5,"EOR",24,5
10270	DATA"LSR", 33,5,"???",0,1,"BVC",12,12
10280	DATA"EOR",24,10,"???",0,1,"???",0,1
10290	DATA"???",0,1,"EOR",24,6,"LSR",33,6
10300	DATA"222" O 1 "CLT" 16 1 "EDR" 24 9
10310	DATA"???",0,1,"CLI",16,1,"EDR",24,9 DATA"???",0,1,"???",0,1,"???",0,1
10320	DATA"EDR" - 24 - 8 - "LSR" - 33 - 8 - "222" - 0 - 1
10330	DATA"EDR",24,6,"LSR",33,8,"???',0,1 DATA"RTS",43,1,"ADC",1,11,"???",0,1
10340	DATA"???".0.1."???".0.1."ADC".1.3
10350	DATA"???",0,1,"???",0,1,"ADC",1,3 DATA"ROR",41,3,"???",0,1,"PLA",38,1
10360	DATA"ADC",1,2,"ROR",41,4,"???",0,1
10370	DATA"JMP", 28, 13, "ADC", 1, 5, "ROR", 41, 5
10380	DATA"JMP",28,13,"ADC",1,5,"ROR",41,5 DATA"???",0,1,"BVS",13,12,"ADC",1,10
10390	DATA"???".0.1."???".0.1."???".0.1
10400	DATA"???",0,1,"???",0,1,"???",0,1 DATA"ADC",1,6,"ROR",41,6,"???",0,1
10410	DATA"SEI",47,1,"ADC",1,9,"???",0,1
10420	DATA"???".0.1."???".0.1."ADC".1.8
10430	DATA"ROR",41,8,"???",0,1,"???",0,1 DATA"STA",48,11,"???",0,1,"???",0,1
10440	DATA"STA",48,11,"???",0,1,"???",0,1
10450	DATA"STY",50,3,"STA",48,3,"STX",49,3
10460	DATA"???".0.1."DEY".23.1."???".0.1
10470	DATA"TXA",54,1,"???",0,1,"STY",50,5
10480	DATA"STA",48.5,"STX",49.5,"????",0.1
10490	DATA"BCC",4,12,"STA",48,10,"???",0,1
10500	DATA"????! A 1 "CTV" EA 4 "CTA" AG 4
10510	DATA"STX",49,7,"???",0,1,"TYA",56,1 DATA"STA",48,9,"TXS",55,1,"???",0,1
10520	DA1A"STA",48,9,"TXS",55,1,"???",0,1
10530	DATA"???",0,1,"STA",48,8,"???",0,1
10540	DATA"???",0,1,"LDY",32,2,"LDA",30,11
10550	DATA"LDX",31,2,"???",0,1,"LDY",32,3
10560	DATA"LDA",30,3,"LDX",31,3,"???",0,1
10570	DATA"TAY",52,1,"LDA",30,2,"TAX",51,1

.

10580 DATA"???",0,1,"LDY",32,5,"LDA",30,5 10590 DATA"LDX",31,5,"???",0,1,"ECS",5,12 10400 DATA"LDA",30,10,"???",0,1,"???",0,1 10610 DATA"LDA",32,6,"LDA",30,6,"LDX",31,7 10420 DATA"???",0,1,"CLV",17,1,"LDA",32,8 10440 DATA"LDA",30,8,"LDX",31,7,"???",0,1 10650 DATA"CPY",20,2,"CMP",18,11,"???",0,1 10660 DATA"DA",30,8,"LDX",31,7,"???",0,1 10660 DATA"P??",0,1,"CPY",20,3,"CMP",18,3 10670 DATA"DEC",21,3,"???",0,1,"INY",27,1 10680 DATA"CPY",20,5,"CMP",18,5,"DEC",21,5 10700 DATA"???",0,1,"BNE",9,12,"CMP",18,10 10710 DATA"???",0,1,"???",0,1,"???",0,1 10720 DATA"CPY",18,4,"DEC",21,6,"???",0,1 10720 DATA"CPY",18,4,"DEC",21,6,"???",0,1 10730 DATA"CPY",18,4,"DEC",21,6,"???",0,1 10740 DATA"???",0,1,"???",0,1,"CMP",18,8 10750 DATA"CPC",18,4,"???",0,1,"CPX",19,2 10760 DATA"SBC",44,1,"???",0,1,"CPX",19,2 10760 DATA"CPX",19,3,"SBC",44,3,"INC",25,3 10780 DATA"CPX",19,3,"SBC",44,10,"???",0,1 10790 DATA"SBC",44,5,"INC",25,5,"???",0,1 10820 DATA"SBC",44,5,"INC",25,5,"???",0,1 10830 DATA"ECP,44,5,"SBC",44,40,"???",0,1 10830 DATA"SBC",44,9,"SBC",44,61 10830 DATA"SBC",44,9,"???",0,1,"SBC",44,6 10830 DATA"SBC",44,9,"???",0,1,"SBC",44,6 10830 DATA"SBC",44,9,"???",0,1,"SBC",44,6 10830 DATA"SBC",44,9,"???",0,1,"SBC",44,6 10830 DATA"SBC",44,9,"???",0,1,"SBC",44,6 10840 DATA"SBC",44,9,"???",0,1,"SBC",44,8,"INC",25,8 10840 DATA"???",0,1

Program description for the single-step simulator

- 100 190 Build the register display, initialize variables and fields.
- 200 360 Display the register contents. The contents of the registers are displayed in hexadecimal. The flags are displayed using the CHR\$ function by adding the value of the flag (0 or 1) to 48.
- 400 530 The keys are tested. If the space bar is pressed, execution passes to the simulator routine at line 1100. The register commands result in branches to input routines which display the old value and wait for the input of the new value. For the flags, the state is simply reversed. If the "cursor down" key is pressed, the disassembler routine is called and the next instruction is displayed.
- 900 920 Calculate the value of the status register SR based on the individual flags.
- 980 Set N and Z flags.
- 990 Increment program counter.
- 1000 1010 Disassemble the next instruction.
- 1100 1150 Perform single-step simulation. The appropriate routine is called depending on the operation code.
- 1200 1751 Simulate routine for all 6510 commands. The routines are alphabetically ordered by mnemonic. The program counter is incremented according to the length of the instruction in line 990. The N and Z flags are set according to the value in the accumulator by a jump to line 980.
- 1800 1820 All branch commands are handled here, after the corresponding flag value is placed in the variable FL.
- 1850 1885 This routine is used to write values in memory. The stack area from \$100 to \$1FF is handled differently. The POKEs are executed only if actual simulation is desired (variable ES).
- 1900 1990 Get the operands for the commands based on the addressing mode. After calling this routine, the address of the operand is in AD, the value itself in OP.

- 2040 2370 Disassembles then next instruction after each single step. The operand is displayed according to the addressing mode in line 2070. If the memory location does not contain a legal instruction code, three question marks are displayed instead. The following routines carry out the addressed task as well as the conversion from decimal to hex.
- 3000 3030 Displays and changes the memory contents. The changes are allowed only if the actual simulation is selected.
- 3100 Select the actual simulation parameters.
- 10000-10860 Contain the instruction mnemonics, operation codes and addressing modes.

FF	constant 255
HI	constant 255
UL	constant 65536
SC	constant 32767
MN\$(255)	table of 6510 mnemonics
OP(255)	table with the corresponding operation codes for the single-step simulation
AD(255)	table with the addressing mode for each instruction.
SP(255)	the simulator stack
H\$(15)	field with hex digits
PC	program counter
AC	accumulator
XR	X register
YR	Y register
SR	status register
SP	stack pointer
N	negative flag
V B	overflow flag break flag
D	decimal flag
I	interrupt flag
Z	zero flag
с	carry flag
Т\$	pressed key
L	length of operands
ES	flag for actual simulation
OP	operand

7. Machine Language Programming on the Commodore 64

Machine language is particularly well-suited for programming high resolution graphics on the Commodore 64. In this section. We begin by programming graphics in BASIC and then converting the corresponding routines to machine language. By doing this, you will become well acquainted with many machine language programming techniques.

Graphics programming can be done in BASIC only with a confusing set of PEEKs and POKESs. By writing a few machine language routines we can greatly simplify these graphics. You will learn how to combine machine language programs with BASIC programs, thereby taking advantage of the strong points of both languages.

The programming details of the video-controller kernal routines are discussed only as much as necessary to solve our problem. If you want to get a closer look at the hardware and operating system of the Commodore 64, we recommend the book **The Anatomy of the Commodore 64** available from ABACUS Software.

Before you turn to the first example, take a look at how you can use machine language programs from BASIC and how how to pass parameters between the two programs.

The normal way to call a machine language program from BASIC

is to use the SYS command to specify the memory location where execution is to begin. SYS assumes that the machine language program is already in memory and then passing control to it. When the machine language program executes an RTS instruction (return from subroutine), execution returns to the BASIC statement following the SYS command.

Some machine language routines require no parameters to be passed to it. A routine for clearing the screen, for example, does not require any parameters.

Other routines require parameters. A routine for plotting a point requires an X and Y coordinate, for example.

How can you pass parameters to machine language routines?

There are several different techniques for passing parameters:

a. Using the pigeon-hole method, you can place the parameters in one or more memory locations previously agreed upon. For our example, one memory location contains the horizontal coordinate and another memory location the vertical coordinate. You can do this from BASIC with two POKE commands. The machine language program can then get the values of the coordinates from the memory locations and process them.

b. Using the register pass area method, you can pass values between the BASIC program and the machine language program. When a SYS command is executed by BASIC, it is possible to transfer specific values through the registers. Because we cannot access the processor registers directly from BASIC, four memory locations are reserved for this purpose. When the SYS instruction is executed, the contents of the following memory locations are copied into the registers before the branch to the routine is made.

780	=>	accumulator
781	=>	X register
782	=>	Y register
783	=>	status register

To start a machine language routine with a specific value in the accumulator, you would POKE location 780 with the desired value. Addresses 781 and 782 pertain to the X and Y registers. Caution must be exercised in assigning a value to the status register. Take care not to unintentionally set the decimal or interrupt flag since this can lead to complications.

After the machine language routine is finished, the contents of these registers are saved in these same memory locations. So the machine language routine can pass information back to the BASIC program using the same technique. To retrieve a value, the BASIC program merely PEEKs the desired register pass area. Using this method, it is possible to transfer three or possibly four 8-bit values between the BASIC and machine language programs. This should suffice for most applications. If more parameters must be transferred, you must establish memory locations as described above.

c. Using the BASIC interpreter formula evaluation routine, you can pass an almost unlimited number of parameters to the machine language routine. For example, when the interpreter encounters an instruction such as POKE 780,10, it uses a built-in ROM routine to evaluate the parameters following the POKE keyword. This routine evaluates not only constants, but complicated expressions as well, such as POKE A+7.5*Z%(INT(SIN(X)*1000)),EXP(X). You can call this ROM routine from your own machine language program. Later you will see how to use these routines. For now, use the register pass area to transfer parameters directly via the registers.

Before discussing graphics programming, you should be acquainted with a few principles.

The distinguishing characteristic of high resolution graphics is that you can access each individual pixel on the screen. This is unlike the normal text mode, where you can access only complete characters (8X8 pixels). For normal text there are 25 * 40 characters at your disposal; with high resolution graphics there are eight times as many in each direction, 200 * 320 points.

In normal text mode, each character requires one byte in video RAM. Each screen location can display any of 256 different characters. Normal text mode requires 25 * 40 * 1 = 1000 bytes of memory called video RAM. Video RAM is located beginning at address 1024 thru 2023 (\$400 to \$7E8). This starting address of the video RAM can be changed in steps of 1 Kbyte (\$400, \$800, \$C000, \$1000, etc.) by programming the video controller.

In high resolution graphics mode, each point requires one bit. Each pixel can be either on or off. High resolution graphics requires 200 * 320 * 1 bit = 64000 bits = 8000 bytes of memory. Memory used in this way is often called the

bit-mapped area. The starting address of the bit-mapped area is specified by programming the video controller in the Commodore 64.

· · ·

Before programming the video controller, you have to first decide where the 8K bit-mapped area is to be located. At first, you may be tempted to use 8K storage from the area that BASIC normally uses. But since you are programming in machine language you have other alternatives. The Commodore 64 has a full 64K of RAM, in addition to the ROMS, input and output devices and character ROMS. You can use the RAM that lies "underneath" (in the same address range) the BASIC and kernal ROM. This area is located beginning at address \$E000 to \$FFFF. Normally you cannot use this area from BASIC because you must first turn off the BASIC interpreter and operating system when accessing these locations.

The video RAM normally used for the text screen is used as color memory when using high resolution graphics. Since the video RAM and bit-mapped areas must be located within the same 16K range (\$C000 - \$FFFF), you can use the from \$C000 to \$C3FF for color memory. Since there is only 1K of video RAM available for use as color memory, each byte of video RAM determines the color of the 64 pixels within the field of an 8x8 cells.

Now we present several routines which you can use for programming in high resolution graphics.

The first routine changes the Commodore 64 from text mode to high resolution graphics mode. By using the area bemeath the ROMS for the bit-mapped graphics area, the normal text screen contents are not destroyed. The contents is preserved when we switch from one mode to another. Here's the program in pseudo-BASIC. Of course this BASIC program does not run since we cannot use hexadecimal numbers as constants.

100 V = 53428 : REM VIDFO CONTROLLER START ADDRESS 110 V1 = V+17 : REM GRAPHICS-MODE SWITCH ADDRESS 120 V2 = V+24 : REM VIDEO RAM ADDRESS 130 CIA = \$DD00 : REM 16K RANGE 140 POKE V1,59 150 POKE V2,8 160 POKE V2,8 160 POKE CIA,0 170 END

To convert this to machine language, first decide where the machine language program is to be stored. Since the area from \$C000 to \$C400 is used as color memory, use the area beginning at \$C400 for the program. The conversions of these commands to machine language is straight-forward. Remember to RUN the short program UNTOKEN before creating the following assembler source program.

100 VIDEO = 53248 ; VIDEO CONTROLLER 110 V1 = 53625 : ADDRESS FOR GRAPHICS MODE 120 V2 = 53272 ; ADDRESS FOR VIDEO RAM ADDRESS 130 CIA = \$DD00 ; 16K SELECTION 140 *= \$C400 ; START OF OUR ROUTINE 150 LDA #59 160 STA V1 170 LDA #8 180 STA V2 190 LDA #0 200 STA CIA 210 RTS 220 .EN

Assembling the above program, gives you this listing:

D000				100	VIDEO	=	53248
D011				110	V1	=	53265
D018				120	V2	=	53272
DD00				130	CIA	=	\$DD00
				140		*=	\$C400
C400	A9	3B		150	ON	LDA	#59
C402	8D	11	D0	160		STA	Vl
C405	A9	80		170		LDA	#8
C407	8D	18	D0	180		STA	V2
C40A	A9	00		190		LDA	#0
C40C	8D	00	DD	200		STA	CIA
C40F	60			210		RTS	
				220		.EN	

Now let's write a routine which switches the Commodore 64 back to normal text mode. You do this by loading the video controller registers with their original values. For the sake of simplicity, append this routine to the previous one.

100 VIDEO = 53248 ; VIDEO CONTROLLER 110 V1 = 53625 : ADDRESS FOR GRAPHICS MODE 120 V2 = 53272 ; ADDRESS FOR VIDEO RAM ADDRESS 130 CIA = \$DD00 ; 16K SELECTION 140 *= \$C400 ; START OF OUR ROUTINE 150 ON LDA #59 160 STA V1 170 LDA #8 180 STA V2 190 LDA #0 200 STA CIA 210 RTS 220 ; TURN OFF 230 OFF LDA #27 240 LDA V1 250 LDA #21 260 STA V2 270 LDA #3 280 STA CIA 290 RTS 300 .EN

After assembling this program, you should display the symbol

table. The symbols ON and OFF have been defined, even though they are not referred to in the program? We have done this because these addresses are used later for the calls via the SYS instruction.

D000			100	VIDEO	=	53248			
D011			110	V1	=	53265			
D018			120	V2	=	53272			
DD00			130	CIA	=	\$DD00			
			140		*=	\$C400			
C400	A9 3	В	150	ON	LDA	#59			
C402	8D 1	1 D0	160		STA	Vl			
C405	A9 0	8	170		LDA	#8			
C407	8D 1	8 D0	180		STA	V2			
C40A	A9 0	0	190		LDA	#0			
C40C	8D 0	0 DD	200		STA	CIA			
C40F	60		210		RTS				
C410			220				;	TURN	OFF
C410	A9 1	В	230	OFF	LDA	#27			
C412	8D 1	1 D0	240		STA	Vl			
C415	A9 l	5	250		LDA	#21			
C417	8D 1	8 D0	260		STA	V2			
C41A	A9 0	3	270		LDA	#3			
C41C	8D 0	0 DD	280		STA	CIA			
C41F	60		290		RTS				
			300		.EN				

C400 / C420 / 0020 SOURCE FILE IS EXAMPLE.SRC 0 ERRORS

OFF	C410	CIA	DD00	ON	C400
VIDEO	D000	V 1	D011	V2	D018

Before you test these routines, convert the starting addresses ON and OFF into decimal: \$C400 is equal to 50176, \$C410 is equal to 50192. You can test the routines by using a short BASIC program:

100 SYS 50176 : REM GRAPHICS ON 110 GET A\$: IF A\$="" THEN 110 120 SYS 50192 : REM GRAPHICS OFF

This program switches to the high resolution graphics mode, waits for a key press and then switches back to the normal text mode. Try it!

When you RUN the program, a mixture of colored squares appears on the screen. What you see are the random values that the unused RAM area contains after the computer is turned on. If you press a key, you return to the normal text screen mode.

The next task is to clear the high-resolution graphic screen and color memory. In BASIC you can perform this by using a loop to POKE the bit-mapped graphics area.

To erase all the points in the bit-mapped graphics area, each bit must be set zero. Therefore each byte of the bitmapped area is also set to zero. The loop must clear the area beginning at address \$E000 through \$FFFFF (actually to \$FF3F because only 8000 and not 8192 bytes are used).

FOR I = 53744 TO 65535 : POKE I,0 : NEXT

You can do this with a BASIC program, but it takes about 30 seconds to execute. In machine language the whole thing takes place much faster.

Earlier we write a machine language program to display the Commodore 64's character set on the screen. We used an index

- 148

register to control the program loop. This next loof, requires a range beyond the 256 maximum range of the X and Y index registers. Since you must clear 8000 bytes (length of the bit-mapped area) you can do this with two nested loops. In BASIC it might look like this:

100 AD = 57344 110 FOR X = 0 TO 31 120 FOR Y = 0 TO 255 130 POKE AD+Y, 0 140 NEXT Y 150 AD = AD+256 160 NEXT X

Here we divided the range of 8192 bytes into 32 parts (or "pages") of 256 bytes each. During each pass through the loop 256 bytes are cleared. Then the base address (AD) is incremented by 256 and the next 256 bytes are cleared. The occurs a total of 32 times, as controlled by the variable X. As an "freebie" we also cleared an extra 192 bytes in the last page (bytes 8001 through 8192). Since these 192 bytes are unused, this won't cause us any problems. Now convert the BASIC program to machine language:

100 AD = \$E000 110 LDA #0 ; ERASE ACC 120 LDX #0 130 LDY #0 140 STA AD,Y 150 INY 160 BNE SYMB1 170 ; AD = AD + \$100 180 INX 190 ; IS X = 31? 200 ; NO, THEN BACK TO LINE 130 210 .EN Some missing pieces from the above program. Can you correctly place the label SYMB1? It should be placed at line 140. Variable AD is not yet incremented. Use the indirect indexed addressing mode for this. Using this technique, the actual address is obtained from the sum of the two-byte pointer in page zero and the Y-register. Later you can increment this pointer by \$100, as called for in line 170. The indexed addressing mode used in line 140 above can access a range of only 256 bytes, but the indirect indexed addressing technique overcomes this limitation. The test of the X-register for 31 in line 190 and the branch back in line 200 are straight-forward. Here's the changes to the above program:

100 AD = \$E000 110 LDA #0 : ERASE ACC 120 LDX #0 130 SYMB2 LDY #0 140 SYMB1 STA (AD),Y 150 INY 160 BNE SYMB1 170 ; AD = AD + \$100 180 INX 190 CPX #32 200 BNE SYMB2 210 .EN

Using indirect indexed addressing, address AD must be a twobyte pointer located in page zero, not an absolute address as before. You can use the memory locations \$FA and \$FB for this pointer. This pointer is loaded with the value \$E000 at the beginning of the routine - the low-byte (\$00) in \$FA and the high-byte (\$E0) in \$FB. Now add an RTS instruction to

the end of the routine, and the final program looks like this:

90 *= \$C420 100 LDA #<\$E000 102 STA \$FA 104 LDA #>\$E000 106 STA \$FB 110 LDA #0 ; ERASE ACC 120 LDX #31 130 SYMB2 LDY #0 140 SYMB1 STA (AD),Y 150 INY 160 BNE SYMB1 170 INC \$FB 180 INX 190 CPX #32 200 BNE SYMB2 205 RTS 210 .EN

This routine is assembled beginning at \$C420. Save the source program to disk and then assemble it.

00FA				90	AD	=	\$FA
00FB				95	ADl	=	\$FB
C420				97		*=	\$C420
C420	A9	00		100		LDA	#<\$E000
C422	8D	FA	00	102		STA	AD
C425	A9	E0		104		LDA	#>\$E000
C427	8D	FB	00	106		STA	AD1
C42A	A9	00		110		LDA	#0
C42C	A2	00		120		LDX	#31
C42E	A0	00		130	SYMB2	LDY	#0
C430	91	FA		140	SYMB1	STA	(AD),Y
C432	C8			150		INY	
C433	D0	FΒ		160		BNE	SYMB1
C435	EE	FΒ	00	170		INC	AD1
C438	E8			180		INX	
C439	E0	20		190		СРХ	#32
C43B	D0	F1		200		BNE	SYMB2
C43D	60			205		RTS	
				210		• EN	

C420 / C43E / 001E SOURCE FILE IS EXAMPLE 2.SRC 0 ERRORS

AD 00FA AD1 00FB SYMB1 C430 SYMB2 C42E

Now that the above program works, can you write a program that presents a more elegant solution? First, you can use zero-page addressing for the two addresses AD and AD1. This is done by using an asterisk before each of the labels. You can also remove the instruction for loading the accumulator with zero in line 110 as this already occurs in line 100; but you must first reverse the order of the assignments in lines 100 to 102 and 104 to 106. If you let the X loop vary from 32 to 0, you can eliminate the comparison in line 190. These improvements enable the program a bit shorter. Here's the new listing:

00FA			90	AD	=	\$FA
00FB			95	AD1	=	\$FB
C420			97		*=	\$C420
C420	A9	E0	100		LDA	#>\$E000
C422	85	FΒ	102		STA	*ADl
C424	A9	00	104		LDA	#<\$E000
C426	85	FA	106		STA	*AD
C428	A2	20	110		LDX	#32
C42A	A8		120	SYMB2	TAY	
C42B	91	FA	130	SYMB1	STA	(AD),Y
C42D	C8		140		INY	
C42E	D0	FΒ	150		BNE	SYMB1
C430	E6	FΒ	160		INC	*ADl
C432	CA		170		DEX	
C433	D0	F5	180		BNE	SYMB2
C435	60		190		RTS	
			200		.EN	

C420 / C436 / 0016 SOURCE FILE IS EXAMPLE 2.SRC 0 ERRORS AD 00FA AD1 00FB SYMB1 C42B SYMB2 C42A

With these changes, the program is shorter and faster. Try out the machine language routines by calling them with the following BASIC program:

100 SYS 50176 : REM GRAPHICS ON 110 GET A\$: IF A\$="" THEN 110 120 SYS 50208 : REM ERASE GRAPHIC IMAGE 130 GET A\$: IF A\$="" THEN 130 140 SYS 50192 : REM GRAPHICS OFF

After RUNning it, the bit-mapped graphics mode of the Commodore 64 is turned on. When a key is pressed, the graphics screen is cleared. This happens almost immediately. With the earlier BASIC version, this took 30 seconds! By pressing a key again, you turn off the bit-mapped graphics mode and return to normal text mode. Now you can write the corresponding routine to initialize the color memory.

This routine accepts two parameters - one representing the background color and the other the color of the set points. The lower four bits (nybble) of each color memory byte determines the background color and the upper nybble, the color of the set points. Each color memory byte controls a group of 8x8 pixels, as mentioned earlier. For example, if the value of the byte is \$10, then the lower nybble is 0 and the upper nybble is 1. This means that the background is black and the foreground is white for that particular 8X8

cell. You can pass the colors to the routine in the accumulator. Try to solve the problem yourself and then compare your solution the one below. Use \$C440 as the starting address of the routine. Here's our listing:

00FA			90	AD	=	\$FA
00FB			95	AD1	=	\$FB
C440			97		*=	\$C420
C440	A0	C0	100		LDY	#>\$C000
C442	84	FΒ	102		STY	*ADl
C444	A0	00	104		LDY	#<\$C000
C446	84	FA	106		STY	*AD
C448	A2	04	110		LDX	#4
C44A	91	FA	130	SYMB1	STA	(AD),Y
C44C	C8		140		INY	
C44D	D0	FΒ	150		BNE	SYMB1
C44F	E6	FΒ	160		INC	*AD1
C451	CA		170		DEX	
C452	D0	F6	180		BNE	SYMB1
C454	60		190		RTS	
			200		.EN	

```
C440 / C455 / 0015
SOURCE FILE IS EXAMPLE 3.SRC
0 ERRORS
```

AD 01	OFA	ADl	00FB	SYMB1	C44A
-------	-----	-----	------	-------	------

There is a small change to the previous program. The instruction at 180 branches to SYMBI since the Y-register contains zero; reloading with zero at SYMB2 is superfluous. Try your version now. The starting address is \$C440 or 50240. Pass the color value to the accumulator with POKE 780,16

Now that we have taken care of the "housekeeping routines", you can start programming the most important routine for

using high resolution graphics: setting and erasing individual points. The next routine demonstrates several programming techniques.

First a word about the layout of the bit-mapped graphics area.

Look at the table on the following page. It illustrates the relationship of the bit-mapped graphics area to the normal 40 column by 25 lines text screen. The numbers in the table represent the offset from the start of the bit-mapped graphics memory that specify if a particular pixel is turned on or off. Let's call the address of the start of the bit-mapped graphics memory + this offset, the target address. For example, offset 9 of the bit-mapped graphics area controls the pixel at X=8, Y=1. The target address for this point is \$E009 (\$E000 + 9), where \$E000 is the start of the bit-mapped graphics area.

X-coordinate										
	0-7	8-15	••••	312-319						
COLUMN/ LINE	Col 0 0 1	Col 1 8 9	••••	Col 39 312 313	Y-coordinate 0 1					
Line O	2 3 4 5 6 7	10 11 12 13 14 15	• • • •	314 315 316 317 318 319	1 2 3 4 5 6 7					
Line l	320 321 322 323 324 325 326 327	328 329 330 331 332 333 334 335	••••	632 633 634 635 636 637 638 639	8 9 10 11 12 13 14 15					
• • •	••••	••••	••••	••••	••••					
Line 24	7680 7681 7682 7683 7684 7685 7685 7686 7687	7688 7689 7690 7691 7692 7693 7694 7695		7992 7993 7994 7995 7996 7997 7998 7999	192 193 194 195 196 197 198 199					

The screen is divided into 25 lines of 40 columns each; each "cell" requires 8 bytes to represent the 64 pixels within that cell (8 pixels per/line X 8 lines/cell). The contents of a single byte controls one row of 8 pixels. Each bit controls an individual pixel on the screen. The highestorder bit represents the pixel on the far left; the lowestorder bit represents the pixel on the far right.

bit	number	7	6	5	4	3	2	1	0
cont	ents	1	0	0	0	1	1	0	0

If a byte in the bit-mapped area contains the bit pattern of \$10001100 (or \$8C in hex), this means that the first, fifth, and sixth pixels from the left are set. Let's call the contents of the byte at the target address the target value.

To permit easy manipulation of the graphics, each pixel is addressed by its horizontal (X) and vertical (Y) coordinates. The coordinates range from 0 to 319 for the Xaxis (left side of screen to right) and from 0 to 199 for the Y-axis (top of screen to bottom).

First convert the coordinates to actual offsets within the bit-mapped graphics area. Note that each cell is 8-bytes in length. Also note that X-coordinates of 0 thru 7 always fall within the same 8-byte block. The same holds true for Xcoordinates of 8 thru 15, 16 thru 23, etc. To convert the Xcoordinate value to the start of the appropriate 8-byte block, ignore the lower three bits of the X-coordinate value. Do this by using an AND instruction. To ignore the lower three bits, do the following:

X AND %1111 1000

Here's an example:

X-coordinate =======>> Binary representation==>	18 %0001 0010 ^{decimal}
Mask for ANDing======>	
Result=======>>	%0001 0000 = 16decimal

The byte which controls the pixel with an X-coordinate of 18 is in the block beginning at offset 16.

The offset for the X-coordinate is calcuated as follows:

 $OFFSET_{y} = (XH * 256) + (XL AND 248)$

The reason for XL and XH is that an X-coordinate may range from 0 to 319 which is beyond the 255 range of a single byte. Therefore the X-coordinate must be specified using two bytes.

Now for the Y-coordinate. The offset for the Y-coordinate is calculated as follows:

 $OFFSET_v = (Y AND 7) + 40 * (Y AND 248)$

The complete formula for the calculating the offset for a given X a Y coordinate is as follows:

OFFSET = XH*256 + (XL AND 248) + (Y AND 7) + 40*(Y AND 248)

Now translate the formula into machine language. Use the registers to pass information to the routine as follows:

REGISTER		CONTENTS
Y	=>	Y-coordinate
А	=>	XL-coordinate
Х	=>	XH-coordinate

Again, an X-coordinate can range from 0 to 319, so this

requires two bytes of storage. The Y-coordinate is kept in the Y-register. You also need a second 16-bit storage location for storing the offset (SUML/SUMH).

100	XL =
110	XH = \$FB
120	SUML = \$FC
130	SUMH = \$FD
140	*= \$C460
150	STA *XL
160	STX *XH ; SAVE X-COORDINATE
170	TYA ; Y-COORDINATE
180	AND #\$F8

First calculate the last term of the formula (EXPl = 40 * (Y AND 248). The 6510 has no multiplication instruction. Therefore an alternative way of performing multiplication is needed. Recall that a value can be doubled by shifting the contents to the left. Reduce the multiplication by 40 to several doublings:

A * 40 => A * 2 * 2 + A * 2 * 2 * 2

Here, you first get twice the original value (A * 2), then four times (A * 2 * 2), and then five times by adding the original value (A * 2 * 2 + A). Three more doublings by 2 (2 * 2 * 2 = 8) yield the original value times 40.

190 STA *\$FE ; SAVE ORIGINAL VALUE 200 STA *SUML 210 LDA #0 220 STA *SUMH ; CLEAR HI-BYTE 230 ASL *SUML ; DOUBLING THE ORIGINAL VALUE..... 240 ROL *SUMH ; ..IN SUML/SUMH 250 ASL *SUML ; DOUBLING VALUE AGAIN PRODUCES 260 ROL *SUMH ; ..ORIGINAL VALUE * 4 IN SUML/SUMH

When shifting 16 bits, you must use a combination of the ASL instruction for the low-byte (8-bits) and the ROL instruction for the high-byte (8-bits). If the ASL instruction causes the highest bit to be shifted out of the operand, the carry flag is set. The ROL instruction shifts takes into account by shifting this carry flag into the low-order bit of the operand, keeping the mathematics exacting. Now you can add the original value.

270 CLC ; CLEAR OVERFLOW 280 LDA *SUML 290 ADC *SFE 300 STA *SUML ; STORE RESULT AGAIN 310 LDA *SUMH 320 ADC #0 330 STA *SUMH ;ORIGINAL VALUE * 5 IN SUML/SUMH

Why do we add zero to SUMH? If a carry occurs in the SUML addition, it must be taken into account by adding the carry to the high-byte. Adding zero adds any carry which may have been generated by the addition of the low-bytes.

Now we must double the result three more times.

340 ASL *SUML 350 ROL *SUMH ; ORIGINAL VALUE * 10 IN SUML/SUMH 360 ASL *SUML 370 ROL *SUMH ; ORIGINAL VALUE * 20 IN SUML/SUMH 380 ASL *SUML 390 ROL *SUMH ; ORIGINAL VALUE * 40 IN SUML/SUMH

This takes care care of the first and most difficult term. Now add the second expression (EXP2 = (Y AND 7) + EXP 1).

This is done using another 16-bit addition.

400 TYA ; Y-COORDINATE IN ACCUMLATOR 410 AND #7 420 CLC 430 ADC *SUML 440 STA *SUML 450 LDA *SUMH 460 ADC #0 470 STA *SUMH

Next, we add the X-value AND 248 (EXP3 = (X AND 248) + EXP2). EXP3 is the offset to the memory location for the specified X and Y coordinates. It is contained in SUML/SUMH after the instruction at line 550 is executed.

480 CLC 490 LDA *XL 500 AND #\$F8 510 ADC *SUML 520 STA *SUML 530 LDA *XH 540 ADC *SUMH 550 STA *SUMH

The bit-mapped graphics begins at \$E000, so add this value to the offset (TARGET = \$E000 + EXP3) to arrive at the target aaddress.

560 CLC 570 LDA #<\$E000 580 ASC *SUML 590 STA *SUML 600 LDA #>\$E000 610 ADC *SUMH 620 STA *SUMH

At last the target address is in SUML/SUMH.

Remember that the contents of the byte at the target address controls 8 pixels on the bit-mapped graphics screen. From the X-coordinate, we must now determine the bit positon within that byte must be set to one in order for the pixel to be turned on.

Earlier we ignored the lowest three bits of the X-coordinate to calculate the target address. Here's where use use the information contained in those three bits. First isolate the lowest three bits of the X-coordinate:

$$XB = XL AND 7$$

XB is now a value between 0 and 7 and represents the Xcoordinate offset within the bit-mapped control byte. The following table shows the correspondence of the X-coordinate offset and its bit position within the control byte:

х		
coord	i.	bit
offse	et	position
0	=>	7
1	=>	6
2	=>	5
3	=>	4
4	=>	3
5	=>	3 2
6	=>	1
7	=>	0

The lowest three bits of the X-coordinate and the bit positon are inverses of each other. You can convert an Xcoordinate offset to a bit position by using the exclusive

OR instruction:

630 LDA *XL ;low-byte of X-coordinate 640 AND #7 ;isolate the lowest three bits 650 EOR #7 ;convert to bit position

From the earlier calculations, we found the target address. From the above calculations, we found the bit position which needs to be set at that target address to turn on the pixel. We know that each bit position has a certain value, which we call the target value. Now we have to convert that bit position to the target value. This target value is then stored at the target address to set the specific pixel.

To calculate the target value corresponding to this bit position we shift a **one** bit to the left for the number of times indicated by the bit position. Here's the code:

660 TAX ; bit position in X-register 670 LDA #1 ;"one" bit 680 SHIFT DEX 690 BMI OK 700 ASL A ; shift to left 710 BNE SHIFT 720 OK ...

The bit position is contained in the accumulator after executing the instruction in line 650. The target value is calculated by shifting left as many times as specified by the X-register. In lines 680 and 690 the contents of the Xregister are decremented and checked to see if it's negative (less than zero). If not, continue shifting another position

to the left. The branch in line 710 is always executed because the result of the shift is never equal to zero.

Storing the target value contained in the accumulator at the target address turns on the desired pixel.

But there's another consideration. Remember that each target address controls 8 pixels. If another pixel is already set at that target address, then storing the above target value destroys the previous value and erase the other pixels controlled by the same target address.

To avoid this, you should combine the previous value at the target address with new target value. Use the OR instruction for this. By ORing the old value with the new target value, any previously set pixels are not erased.

The target address is pointed to by the contents of SUML/SUMH. To combine the previous value with the new value, you can do the following:

720 OK LDY #0 730 ORA (SUML),Y 740 STA (SUML),Y 750 RTS

Now the new pixel is set and we are done. There is one small point which we overlooked.

The OR instruction in line 730 accesses the contents of a memory location in the range from \$E000 to \$FFFF. The Commodore 64 normally returns the value of the contents of the kernal ROM also located at these same addresses (but in a different bank). A "switch" controls access to either the ROM or RAM at those addresses. The ORA (SUML),Y instruction above would access the ROM and not the bit-mapped graphics area. To access the RAM containing the bit-mapped graphics area, set the switch (I/O register) located at address 1. When you do this, you must inhibit the interrupts because the interrupt routines are not available while the ROM is switched off. After the contents at the target address are updated, the interrupts are re-enabled.

730 LDX #\$34 ; RAM CONFIGURATION
740 SEI ; INHIBIT INTERRUPTS
750 STX *1
760 ORA (SUML),Y
770 STA (SUML),Y ; SET POINT
780 LDX #\$37 ; ROM CONFIGURATION
790 STX *1
800 CLI ; ENABLE INTERRUPTS
810 RTS
820 .EN

Here is the complete assembly listing of all of the routines that we've talked about in this chapter:

00FA		100 XL	=	\$FA
00FB		110 XH	=	\$FB
00FC		120 SUML	=	\$FC
OOFD		130 SUMH	=	\$FD
C460		140	*=	\$C460
C460	85 FA	150	STA	*XL
C462	86 FB	160	STX	*XH ; SAVE X-COORDINATE

V

C464	98	170	TYA	; Y-COORDINATE
C465	29 F8	180	AND	#\$F8
C467	85 FE	190	STA	*\$FE
C469	85 FC	200	STA	*SUML
C46B	A9 00	210	LDA	#0
C46D	85 FD	220	STA	*SUMH
C46F	06 FC	230	ASL	*SUML
C471	26 FD	240	ROL	*SUMH
C473	06 FC	250	ASL	*SUML
C475	26 FD	260	ROL	*SUMH
C477	18	270	CLC	; ERASE CARRY
C478	A5 FC	280	LDA	*SUML
C47A	65 FE	290	ADC	*\$FE
C47C	85 FC	300	STA	*SUML
C47E	A5 FD	310	LDA	*SUMH
C480	69 00	320	ADC	#0
C482	85 FD	330	STA	*SUMH
C482	06 FC	340	ASL	*SUML
C484 C486	26 FD	350	ROL	*SUMH
C488	06 FC	360	ASL	*SUML
C48A	26 FD	370 380	ROL	* SUMH
C48C	06 FC		ASL	*SUML *SUMH
C48E	26 FD	390	ROL	
C490	98	400	TYA	; Y-COORDINATE
C491	29 07	410	AND	#7
C493	18	420	CLC	+ a
C494	65 FC	430	ADC	*SUML
C496	85 FC	440	STA	*SUML
C498	A5 FD	450	LDA	* SUMH
C49A	69 00	460	ADC	#0
C49C	85 FD	470	STA	*SUMH
C49E	18	480	CLC	.
C49F	A5 FA	490	LDA	*XL
C4A1	29 F8	500	AND	#\$F8
C4A3	65 FC	510	ADC	*SUML
C4A5	85 FC	520	STA	*SUML
C4A7	A5 FB	530	LDA	*XH
C4A9	65 FD	540	ADC	*SUMH
C4AB	85 FD	550	STA	*SUMH
C4AD	18	560	CLC	
C4AE	A9 00	570	LDA	#<\$E000
C4B0	65 FC	580	ADC	*SUML
C4B2	85 FC	590	STA	*SUML
C4B4	A9 E0	600	LDA	#>\$E000
C4B6	65 FD	610	ADC	*SUMH
C4B8	85 FD	620	STA	*SUMH
C4BA	A5 FA	630	LDA	*XL
C4BC	29 07	640	AND	#7
C4BE	49 07	650	EOR	#7
C4C0	AA	660	TAX	-
C4C1	A9 01	670	LDA	#1
C4C3	CA	680 SHIFT	DEX	x
C4C4	30 03	690	BMI	ОК
C4C6	0A	700	ASL	A
C4C7	DO FA	710	BNE	SHIFT
0407	20 16			

C4C9	A0	00	720 OK	LDY	#0
C4CB	A2	34	730	LDX	#\$34
C4CD	78		740	SEI	*1
C4CE	86	01	750	STX	
C4D0	11	FC	760	ORA	(SUML),Y
C4 D2	91	FC	770	STA	(SUML),Y
C4D4	A2	37	780	LDX	#\$37
C4 D6	86	01	790	STX	*1
C4 D8	58		800	CLI	
C4D9	60		810	RTS	
			820	. EN	

C460 / C4DA / 007A SOURCE FILE IS EXAMPLE 3.SRC 0 ERRORS

OK	C4C9	SHIFT	C4C3	SUMH	00FD	SUML	00FC
ХН	OOFB	XL	00FA				

Now to try out these routines, we can type this short BASIC program to call the high resolution graphics:

100 SYS 50176 : REM GRAPHICS ON 110 SYS 50208 : REM ERASE GRAPHIC IMAGE 120 POKE 780,16 : REM BLACK/WHITE 130 SYS 50240 : REM INITIALIZE COLOR 140 FOR X=0 TO 319 150 POKE 780,X AND 255 : REM X-LO 160 POKE 781,X / 256 : REM X-HI 170 POKE 782,X * 0.625 : REM Y 180 SYS 50272 : SET POINT 190 NEXT 200 GET A\$: IF A\$="" THEN 200 210 SYS 50192 : REM TURN OFF

RUNning this program draws a diagonal line from the upper left to the lower right corner. Pressing a key returns the Commodore 64 to the normal text mode.

Now consider how a point can be erased. The routine to calculate the target address is the same for setting or for

erasing a point. By changing line 760, you can cause the routine to erase a pixel instead of setting it. Look at what happens when you set a point with ORA.

previous bit pattern % 01001000 pattern for new pixel % 00010000 result of ORA % 01011000

The new point is set by using an ORA instruction. To erase the same point use the AND instruction.

previous bit pattern	웅	01011000
pattern for pixel to be erased	₽	00010000
result of AND	8	00010000

Something is wrong here! All the points are erased except for the one you want to erase. The bit values must be inverted prior to ANDing. You can can do this with the EOR intruction.

pixel to be erased	ક્ર	00010000
invert all bits	ક્ર	11111111
gives the new pattern	ક્ર	11101111

Except for the point to be erased, all the bits are now set and the AND operation with the original value works.

previous bit pattern new pattern	<pre>% 01011000 % 11101111</pre>
correct pattern	<pre>% 01001000</pre>

Now add the erase function to the other routines. You can use the carry flag to signal whether the point is to be set or erased. If the carry flag is clear, then the routine erases the pixel. The routine must make note of the condition of the carry flag. Use the PHP instruction to save the status register on the stack, as in line 145. Examine the flags by using a PLP instruction in line 735. Here are the remaining changes to the program:

760 BCC ERASE 770 ORA (SUML),Y 780 BCS OK2 790 ERASE EOR #\$FF ; INVERT 800 AND (SUML),Y 810 OK2 STA (SUML) 820 LDX #\$37 830 STX *1 840 CLI 850 RTS 860 .EN

If the carry flag is clear, jump to line 790 where the bits are inverted with EOR #\$FF. The AND instruction is executed and the result is stored. If, on the other hand, the carry flag is set, then the bit is set with ORA as before and the new value is again stored at the target address. The complete listing is shown below:

00FA			100	XL	=	\$FA	
00FB			110	XH	=	\$FB	
00FC			120	SUML	=	\$FC	
OOFD			130	SUMH	=	\$FD	
C460			140		*=	\$C460	
C460			145		PHP		
C461	85	FA	150		STA	*XL	
C463	86	FB	160		STX	*XH ;	X-COORDINATE
C465	98		170		TYA	;	Y-COORDINATE

C466	29	F8	180		AND	#\$F8	
C468	85	FE	190		STA	*\$FE	
C46A	85	FC	200		STA	*SUML	
C46C	A9	00	210		LDA	#0	
C46E	85	FD	220		STA	*SUMH	
C470	06	FC	230		ASL	*SUML	
C472	26	FD	240		ROL	*SUMH	
C474	06	FC	250		ASL	*SUML	
C476	26	FD	260		ROL	*SUMH	
C478	18		270		CLC	; ;	ERASE CARRY
C479	A5	FC	280		LDA	*SUML	
C47B	65	FE	290		ADC	*\$FE	
C47D	85	FD	300		STA	* SUML	
C47F	A5	FD	310		LDA	*SUMH	
C481	69	00	320		ADC	#0 # anne	
C483	85	FD	330		STA	*SUMH *SUML	
C485	06	FC	340		ASL		
C487	26	FD	350 360		ROL ASL	*SUMH *SUML	
C489	06	FC	370			*SUML	
C48B C48D	26 06	FD FC	370		ROL ASL	*SUML	
C48D C48F	26	FD	390		ROL	*SUML	
C487 C491	<u>98</u>	FD	400		TYA	30MH ;	Y-COORDINATE
C492	29	07	410		AND	#7 ,	I COORDINNID
C492 C494	18	07	420		CLC	π/	
C494	65	FC	430		ADC	*SUML	
C497	85	FC	440		STA	*SUML	
C499		FD	450		LDA	*SUMH	
C49B	69	00	460		ADC	#0	
C49D	85	FD	470		STA	*SUMH	
C49F	18	10	480		CLC	Donin	
C4A0	A5	FA	490		LDA	*XL	
C4A2	29	F8	500		AND	#\$F8	
C4A4	65	FC	510		ADC	*SUML	
C4A6	85	FC	520		STA	*SUML	
C4A8	A5	FB	530		LDA	*хн	
C4AA	65	FD	540		ADC	*SUMH	
C4AC	85	FD	550		STA	*SUMH	
C4AE	18		560		CLC		
C4AF	A9	00	570		LDA	#<\$E000	
C4B1	65	FC	580		ADC	*SUML	
C4B3	85	FC	590		STA	*SUML	
C4B5	A9	EO	600		LDA	#>\$E000	
C4B7	65	FD	610		ADC	*SUMH	
C4B9	85	FD	620		STA	*SUMH	
C4BB	A5	FA	630		LDA	*XL	
C4BD	29	07	640		AND	#7	
C4BF	49	07	650		EOR	#7	
C4C1	AA		660		TAX		
C4C2	A9	01	670		LDA	#1	
C4C4	CA	0.2	680	SHIFT	DEX	07	
C4C5	30	03	690		BMI	OK	
C4C7	0A		700		ASL	A	
C4C8	D0	FA	710		BNE	SHIFT	
C4CA	A0	00	720	OK	LDY	#0	

C4CC A2 34 C4CE 28 C4CF 78 C4D0 86 01 C4D2 90 04 C4D2 90 04 C4D4 11 FC C4D6 B0 04 C4D8 49 FF C4DA 31 FC C4DC 91 FC C4DC 91 FC C4DE A2 37 C4E0 86 01 C4E2 58 C4E3 60 C460 / C4E4 / C SOURCE FILE IS 0 ERRORS		ORA (S BCS OK EOR #\$ AND (S STA (S LDX #\$ STX *1 CLI RTS .EN	ASE UML),Y 2 FF UML),Y UML),Y 37									
ERASE C4D8 SUMH 00FD	OK C4CA SUML 00FC		C4DC 00FB	SHIFT XL	C4C4 00FA							
Now change the previous BASIC "test" program:												
<pre>100 SYS 50176 : REM GRAPHICS ON 110 SYS 51208 : REM ERASE GRAPHIC IMAGE 120 POKE 780,16 130 SYS 50240 : REM SET COLOR 140 I=1 150 FOR X=0 TO 319 160 POKE 780, X AND 255 : REM X LO 170 POKE 781, X AND 255 : REM X HI 180 POKE 782, X * 0.625 : REM Y 190 POKE 783, I : REM SET/ERASE 200 SYS 50272 : NEXT 210 GET A\$: IF A\$="" THEN I=1-I : GOTO 150 220 SYS 50192 : REM GRAPHICS OFF</pre>												
This program o	-											
then erases it again. The routine determines if a pixel is												

to be set or erased, by the condition of the carry flag which is passed in memory location 783. Because the carry flag occupies bit position zero within the status register, the corresponding values are one and zero.

You can stop the program by pressing a key. The original screen contents is preserved, just as the graphics screen is also preserved. When you want to switch back to high resolution graphics mode, simply call the routine to erase the screen and you can start anew. Now you can experiment some more with the routine for the color representation.

100 SYS 50176 : REM GRAPHICS ON 110 SYS 51208 : REM ERASE GRAPHICS 120 POKE 780,16 130 SYS 50240 : REM SET COLOR 140 REM 150 FOR X=70 TO 150 : FOR Y=X TO 199 160 POKE 780, X : REM X LO 170 POKE 781, 0 : REM X HI 180 POKE 782, Y : REM Y 190 POKE 783, 1 : REM SET 200 SYS 50272 : NEXT : NEXT 210 FOR C=0 TO 255 220 FOR I=1 TO 500 : NEXT 230 POKE 780, C 240 SYS 50240 : REM COLOR 250 NEXT 260 SYS 50192 : REM GRAPHICS OFF

This program draws a figure and then displays it in all of the 256 possible color combinations.

To summarize, you have learned about indirect indexed addressing; you have worked with the logical operations to set and erase designated bits; you have also used the stack for storing data; and you have performed 16-bit additions and shifts.

An important programming concept still missing is the use of subroutines. This is discussed in the next section.

8. Extending BASIC

In the previous section we passed parameters to the graphics routine by means of POKE commands. Now we present a more elegant way of doing this.

This technique passes parameters the same way as parameters are passs to the BASIC commands.

Let's take a simple BASIC command:

POKE A, B

The variables A and B are arguments for the POKE command. The rules of BASIC allow you to use any expressions, constants or subscripted variables in place of A and B. For example, the following is a legal BASIC statement:

POKE A(1000)/750*INT(X%/9),EXP(ABS(SIN(3*A)))+2

The BASIC interpreter uses a routine in its ROMs to evaluate the value of the expressions. You can let the BASIC interpreter do hard evaluation work by calling this routine from your own programs. In addition, you can perform range checking by using various entry points to the BASIC ROM routines.

When evaulating the arguments for the POKE routine, for

example, the routines check to make sure that the first parameter is a value between 0 and 65535 (16-bit). If not, the error message **ILLEGAL QUANTITY** is issued. The routines then check the second parameter for a value between 0 to 255, and the same error message is given if it fails this test.

How can you use these routines in your own programs?

First you must understand a programming technique that we have not discussed up to this point - the subroutine.

You have probably used subroutines when programming in BASIC. The corresponding commands in BASIC are:

GOSUB and RETURN

The GOSUB command branches to a given line. It differs from the GOTO instruction in that the interpreter remembers the place from which it branched. When the subroutine is finished, and the interpreter encounters a RETURN, the previously saved return address is fetched and execution branches back to the place from where the subroutine call was made.

The 6510 microprocessor has two instructions for managing of subroutines. These commands correspond exactly to their BASIC counterparts.

JSR and RTS

JSR (jump to subroutine) calls the subroutine while the RTS instruction (return from subroutine) takes care of branching back to the calling routine. When do you use these instructions?

Subroutines in machine language programs are used in the same circumstances as in BASIC. If a certain routine is to be used more than once, it should be made into a subroutine.

What does the processor do when it encounters a JSR instruction?

Before it branches to the subroutine, it saves the current address of the program counter so that it knows where to return after the subroutine is complete. Where does it save this information? It uses the stack!

A subroutine call saves the current address (two bytes) of the program counter on the stack. Later, when the RTS instruction is encountered, the address on the stack replaces the program counter contents. The instruction following the JSR is then executed.

So that the 6510 knows at which place on the stack to save to and retrieve from, there is a register called the stack pointer (shortened to SP). This register is a pointer to the

current position of the stack. Let's see what happens when the JSR and RTS commands are executed.

C000 20 00 C1 JSR \$C100 C003 C100 60 RTS

When this program is started at address \$C000, a call is made to the subroutine at address \$C100. In our example, the RTS instruction is encountered immediately and the processor returns to the instruction following the subroutine call, which is \$C003 in our case. Let's see what happens to the stack and the stack pointer.

Address Instruction Stack pointer Stack \$C000 JSR \$C100 \$F9 \$01F9 XX

The data from any previous operations is located at stack address \$01F9. When the processor encounters the JSR instruction, it takes the contents of the program counter, increments it by two and divides it into low and high bytes. It takes the high-byte and stores it at the address to which the stack pointer points. The stack pointer is then decremented by one:

Address	Instruction	Stack pointer	Stack		
\$C000	JSR \$C000	\$ F 8	\$01F9	C0	
			\$01F8	XX	

Now the low-byte of the address is saved on the stack and

the stack pointer is again decremented. The program counter is then set to the starting address of the subroutine:

Address Instruction Stack pointer Stack \$C100 RTS \$F7 \$01F9 C0 \$01F8 02 \$01F7 XX

So during a JSR, the program counter is saved on the stack and the stack pointer is decremented by two. The stack pointer always points to the next free location on the stack.

The RTS instruction performs these functions in reverse. First the stack pointer is incremented and then the low-byte is fetched from the stack:

Address	Instruction	Stack pointer	Stack		
\$C100 RTS		\$F8	\$01F9	C0-	
			\$01F8	02	
			\$01F7	XX	

The value \$02 is placed into the low-byte of the program counter. Then stack pointer is incremented:

Address	Instruction	Stack pointer	Stack		
\$C100	RTS	\$F9	\$01F9	C0	
			\$01F8	02	
			\$01F7	XX	

\$C0 is pulled from the stack and becomes the high-byte of the program counter. The program counter now contains \$C002.

The program counter is incremented by one and the next instruction is fetched from \$C003:

Address Instruction Stack pointer Stack \$C003 ... \$F9 \$01F9 C0 \$01F8 02 \$01F7 XX

Notice that the stack pointer contains the same value after the return from the subroutine as before the call.

It is also possible to nest subroutines with this technique. If a subroutine is called from another subroutines, its return address is saved on the stack. The stack pointer is set to \$F5 in our example. The last return address is fetched by the next RTS instruction and the stack pointer is incremented to \$F7. RTS will always jumps back to the address of the last subroutine call. Through this, it is possible to nest levels of subroutines.

The 6510 microprocessor can save and retrieve the contents of the accumulator and the processor stack register to and from the stack. The commands are PHA and PLA for the accumulator and PHP and PLP for the status register. These commands also affect the stack pointer. Using these instructions you can, for example, save the contents of the status register and later retrieve it. Thus the stack can be used as a "scratchpad".

; accumulator to stack PHA TYA PHA ; and Y register TXA PHA ; and X register PLA ; get X register back TAX PLA TAY ; and Y register PLA ; and accumulator

The X and Y registers cannot be saved directly onto the stack. You have to transfer the contents of the the Xregister or Y-register to the accumulator first and then placed the contents to the stack with a PHA instruction. Notice that the registers must be pulled from the stack in the reverse order they were pushed on. This is in accordance with to the principle of the stack. The last value place on the stack is the first value retrieved from the stack - in a last in-first out (LIFO) order.

The operation of the stack and the stack pointer can be illustrated by the single-step simulator. After each step, you can observe the contents of the registers. The simulator becomes a very useful learning tool.

Now let's can return to our discussions about the BASIC interpreter routines for passing parameters.

A routine called GETBYT in the BASIC ROMs, reads an expression from BASIC text, checks it for a range from 0 and 255, and returns this value in the X-register.

Another routine called FRMNUM, converts a expression to 16bit (0 to 65535) values.

The routine GETADR, checks an expression for a range from 0 to 65535. If it is valid, the low-byte of the value is returned in memory location \$14 and the high-byte of the value is returned in memory location \$15. The addresses of these routines are listed below.

Earlier we talked about how the BASIC interpreter reads each line character by character in order to find the BASIC keywords. In doing so, BASIC keeps track of its place in the line by using an internal variable called **TXTPTR** (for text pointer). At any given time, TXTPTR points to the BASIC text which the interpreter is processing.

If you want to pass a parameter from a BASIC program to a machine language routine, you can use the BASIC command:

SYS AAAAA, PPP

AAAAA is the decimal address of the machine language routine. PPP is the parameter that you are passing to the machine langauge routine.

If you want to pass several parameters, you must separate these parameters from each other with commas. The BASIC interpreter has a routine to check for commas This routine

is called CHKCOM and checks to see if TXTPTR is pointing to a comma.

If you want to read a character directly from the BASIC text, the routine CHRGOT gets the character pointed to by TXTPTR and puts it into the accumulator. The routine CHRGET does the same thing but first increments TXTPTR before getting the character.

These routines also set certain flags which give additional information about the character read. If the zero flag is set, then either a zero byte (end-of-line in BASIC programs) or a colon ":" was read, indicating the end of the statement. If a digit is read, the carry flag is clear.

Here is a summary of the addresses:

GETBYT	\$B79E
FRMNUM	\$AD8A
GETADR	\$B7F7
CHKCOM	\$AEFD
CHRGOT	\$0079
CHRGET	\$0073
GETPAR	\$B7EB

To get a 16-bit parameter followed by an 8-bit parameter such as for the POKE command, you can use the routine GETPAR. The routine GETPAR calls the following routines in order: FRMNUM, GETADR, CHKCOM, and GETBYT.

You can use GETPAR for the bit-mapped graphics routines

because the value for the X-coordinate is a 16-bit number (0-319) and the value for the Y-coordinate (0-199) is an 8bit number. If the values exceed 65535 or 255, respectively, the BASIC interpreter responds with **ILLEGAL QUANTITY.** So GETPAR checks the ranges of the coordinates and display this error message if required.

To use these routines for parameter passing, a call would look like this:

SYS 50240,X,Y

When BASIC encounters this statement, it sets up to execute the machine language routine beginning at memory location 50240. The BASIC TXTPTR is left pointing at the first comma following the 50240.

Using this technique, you do not have to POKE the parameters into memory. The program is also a lot easier to follow.

Now let's reprogram the graphics routines again, but incoprorating the new techniques:

100 JSR CHKCOM ; COMMA FOLLOWING? 110 JSR GETPAR ; GET COORDINATES 120 STX YCOOR ; SAVE Y-COORDINATE 130 LDA \$14 140 STA XL ; X-COORDINATE LO 150 LDA \$15 160 STA XH

182

First we check for a comma which separates the SYS address from the X-coordinate. Next we use the routine which gets two parameters, GETPAR. The value of the one-byte parameter, the Y-coordinate, is returned in the X-register which we save at the address YCOOR. The value of the second parameter, the X-coordinate returned in \$14/\$15 and saved in XL and XH. Now check that the X and Y-coordinates lie in the permitted value range. If the Y-coordinate is less than 200, it is legal, otherwise display ILLEGAL QUANTITY. The same type of range checking is performed for the X-coordinate.

170 CPX #200 ; Y >= 200? 180 BCC OK 190 ERROR JMP ILLEGAL 200 OK LDA XH 210 CMP #>320 220 BCC OK1 230 BNE ERROR 235 LDA XL 240 CMP #<320 250 BCS ERROR 260 OK1 ...

The remainder of the program is the same as the earlier version.

9. Input/Output Operations

In BASIC you use specific commands to input characters from the keyboard, display them on the screen and communicate with peripherals. Some of the BASIC commands to do this are:

OPEN CMD PRINT# INPUT# CLOSE

In machine language programming you use similar techniques. The operating system already contains routines which correspond to the BASIC commands above. You can use these routines to perform input or output operations.

Some of the routines follows:

OPEN

This routine requires three parameters: the logical file number, the device address, and the secondary address, and an optional filename. These parameters are set by the routines SETFLS and SETNAM. The OPEN routine itself needs no parameters but it does require a prior calls to the other routines.

·184

SETFLS

To use SETLFS, load the accumulator with the logical filenumber, the X-register with the device number, and the Y-register with the secondary address and then call this routine to set these parameters for the OPEN routine.

SETNAM

This routine is defines a filename. Load the accumulator with the of the filename (0 indicates that no filename will be used); place the address of the filename (the first memory location it is stored in) in the X-registser (lowbyte) and Y-register (high-byte).

PRINT

Load the accumulator with the character you wish to output and then call this routine. Normally the output goes to the screen. If you want to output to the printer, for example, you must first open a file to the printer (device 4) with the OPEN routine and then call the next routine.

CHKOUT

This routine corresponds to the CMD instruction in BASIC. To output a character to an opened file, load the X-register with the logical file number and call the subroutine CHKOUT. All output from the PRINT instruction is sent to this device until cancelled with the next routine.

CLRCH

CLRCH cancels the CMD mode set by the CHKOUT instruction. It requires no parameters.

INPUT

This routine gets a character from the keyboard and returns it in the accumulator. To read data from a file, first open and then activate it with the next routine.

CHKIN

Load the logical file number in the X-register and call this routine. After calling this routine, all input is read from this device until cancelled with CLRCH.

CLOSE

Load the logical file number into the accumulator and call this routine to close a file.

The following table contains the addresses of these routines.

Routine	Address
OPEN	\$FFC0
SETFLS	\$FFBA
SETNAM	\$FFBD
PRINT	\$FFD2
CHKOUT	\$FFC9
CLRCH	\$FFCC
INPUT	\$FFCF
CHKIN	\$FFC6
CLOSE	\$FFC3

To demonstrate how to use these routines, let's convert the following BASIC commands to machine language:

```
OPEN 1,8,15
    PRINT# 1,"I"
    CLOSE 1
100 LDA #1 ; LOGICAL FILE NUMBER
110 LDX #8 ; DEVICE NUMBER
120 LDY #15 ; SECONDARY ADDRESS
130 JSR SETFLS
140 LDA #0
150 JSR SETNAM ; NO NAME
160 JSR OPEN ; OPEN FILE
170 LDX #1 ; LOGICAL FILE NUMBER
180 JSR CHKOUT ; OUTPUT TO FILE
190 LDA #73 ; "I"
200 JSR PRINT
210 JSR CLRCH
220 LDA #1 ; LOGICAL FILE NUMBER
230 JSR CLOSE
240 RTS
```

Lines 100 to 130 setup the parameters for the OPEN. There is no filename, so the length of the filename is set to zero in line 140 to 150. Line 160 OPENs the file. Now output to the logical file 1 is enabled (lines 170-180) and the ASCII value of "I" is transmitted to the disk (device 8) by the PRINT routine to initialize the diskette. Routine CLRCH, redirects output to the screen. Finally, lines 220 and 230 CLOSEs the file and execution returns to BASIC (or other calling program) with the RTS.

The next example, reads the error channel of the disk drive and display the error message on the screen. You can do this in BASIC like this:

100 OPEN 1,8,15 110 INPUT#1, A,B\$,C,D 120 PRINT A; B\$; C; D 130 CLOSE 1

Because we can output the error message directly to the screen, we need no variables in our program. We simply read characters from the channel until the status variable ST, is equal to 64, signaling the end of the error message. We can do this with the following BASIC program:

100 OPEN 1,8,15 110 GET#1, A\$: PRINT A\$; 120 IF ST <> 64 THEN 110 130 CLOSE 1

To do this in machine language, you must know that the

status variable of the operating system ST, is stored in location 144 or \$90. Let's try the machine language version:

10 OPEN = SFFC0 20 SETFLS = \$FFBA 30 SETNAM = SFFBD40 PRINT = \$FFD250 CLRCH = \$FFCC60 INPUT = \$FFCF 70 CHKIN = \$FFC680 CLOSE = SFFC390 STATUS = \$90 ; STATUS VARIABLE 100 LDA #1 ; LOGICAL FILE NUMBER 110 LDX #8 ; DEVICE NUMBER 120 LDY #15 ; SECONDARY ADDRESS 130 JSR SETFLS 140 LDA #0 150 JSR SETNAM ; NO NAME 160 JSR OPEN ; OPEN FILE 170 LDX #1 ; LOGICAL FILE NUMBER 180 JSR CHKIN ; INPUT FROM ERROR CHANNEL 190 L1 JSR INPUT ; GET CHARACTER 200 JSR PRINT ; AND OUTPUT 210 BIT STATUS ; TEST STATUS 220 BVC L1 230 JSR CLRCH ; INPUT FROM DEFAULT 240 LDA #1 250 JSR CLOSE 260 RTS 270 .EN

The routine from the previous program for OPENing the file is the same. This time, we input data from the file. Lines 170 and 180 setup to do this. The X-register is loaded with the logical file number 1 and the routine CHKIN is called. Input is now read from the disk drive. Line 190 reads a character from the disk and line 200 writes it to the screen with JSR PRINT. The output goes to the screen because we did not previously use CHKOUT. The status variable ST is tested with the BIT instruction. If the end of the file is reached, status variable ST is set to 64. 64 is equal to 2⁶ or

%01000000 in binary. Therefore bit 6 of this memory location is set at end of file. What does the BIT instruction do? It copies bit 6 of the addressed memory location into the V flag and bit 7 into the N flag. After the BIT instruction, you need only test to see if the V flag is set. The instruction BVC branches if the V flag is clear. In this case, the end has not been reached and we branch back to the read more from the disk. If the V flag is set, we reset the input channel with JSR CLRCH and close the file.

Assemble this program and try it out. Remember, however, that our assembler allows a maximum of only five characters for symbol names.

10:	C000	OPEN =	\$FFC0	
20:	C000	SETFLS =	\$FFBA	
30:	C000	SETNAM =	\$FFBD	
40:	C000	PRINT =	\$FFD2	
50:	C000	CLRCH =	\$FFCC	
60:	C000	INPUT =	\$FFCF	
70:	C000	CHKIN =	\$FFC6	
80:	C000	CLOSE =	\$FFC3	
90:	C000	STATUS =	\$90	
100:	C000 A9 01	LDA	#1 ;LOGICAL FI	LE NUMBER
110:	C002 A2 08	LDX	#8 ;DEVICE NUM	
120:	C004 A0 OF	LDY	#15 ;SECONDARY	ADDRESS
130:	C006 20 BA FF	JSR	SETFLS	
140:	COO9 A9 OO	LDA	#0 ;NO FILENAN	1E
150:	COOB 20 BD FF	JSR	SETNAM	
160:	COOE 20 CO FF	JSR	OPEN ; OPEN FILE	
170:	CO11 A2 O1	LDX	#1 ;INPUT	
180:	C013 20 C6 FF	JSR	CHKIN FROM ERROF	CHANNEL
190:	C016 20 CF FF	Ll JSR	INPUT ; CHARACTER	
200:	C019 20 D2 FF	JSR	PRINT ; AND OUTPUT	
210:	CO1C 24 90	BIT	STATUS ; TEST STATU	JS
220:	CO1E 50 F6	BVC	L1	
230:	C020 20 CC FF	JSR	CLRCH	
240:	C023 A9 01	LDA	#1	
250:	C025 20 C3 FF	JSR	CLOSE ;CLOSE FIL	Ξ
260:	C028 60	RTS		

Now you can try out the machine language routine by typing:

SYS 49152

The error message from the disk appears on the screen, such as:

00, OK,00,00

10. A BASIC Loader Program

You can enter the machine language program as a sequence of numbers in DATA statements. They can be READ by a BASIC program and stored in memory with POKE. You can output the values in decimal by means of a small BASIC program and insert these as DATA statements in a loader program. Here is a program written in BASIC, which does this automatically.

It is used as follows. First load your machine language program. Then type in the following BASIC program and RUN it. You are now asked to enter the starting and ending addresses of the machine language program. The program creates a complete loader program on the printer with an automatically generated checksum. The checksum is simply the sum of all the values. The values are summed while being loaded and the checksum contained within the program is checked against the value generated by the program. If the two values aren't equal, an appropriate message is displayed.

By doing this you can determine if the user made an error while typing in the data.

100 OPEN 1,4 : Z = 100
110 INPUT "START ADDRESS ";A
120 INPUT "END ADDRESS ";E
130 CMD1 : PRINT Z "FOR I =" A "TO" E
140 I=A : Z=Z+10 : PRINT Z "READ X : POKE I,X : S=S+X : NEXT"
150 Z=Z+10 : N=0 : PRINT Z "DATA ";

11. 6510 Disassembler

This section contains a program called a disassembler. The purpose of a disassembler is to translate machine language programs in memory back to the mnemonics used for entering assembly language programs. From the sequence \$A9, \$80, for example, the disassembler generates LDA #\$80. The disassembler is simply started with RUN and it asks for the starting and ending addresses of the memory range to disassemble. The output then appears on the screen, but it can be redirected to the printer with an appropriate OPEN instruction and CMD assignment.

Here's a brief description of the operation of the disassembler. The program gets a byte from memory and interprets it as an operation code. This op code serves as an index in a table of instruction mnemonics, instruction lengths and addressing modes. The disassembler knows the form of the operand and where the next instruction begins from these tables.

The disassembler can be used for your own machine language programs as well as for the disassembly of the operating system and BASIC interpreter. You can often find hints and tips for your own programs there. Better yet is the commented listing of operating system which you can find in The Anatomy of the Commodore 64.

Here is the disassembler listing.

```
100 REM 6510 DISASSEMBLER
110 DIMMN$(255),AD(255),H$(15)
120 FF=255:HI=256:UL=2+16:SC=2+15-1
130 PRINT" (CLR) (C/DN) (C/DN) (C/RT) (C/RT) (C/RT) (C/RT) (C/RT) (C/RT)
 (C/R1) (C/R1) (C/RT) (C/RT) (C/RT) 6510 DISASSEMBLER"
140 FORI=OTO15:READH$(I):NEXT
150 FORI=OTO255:READMN$(I),AD(I):NEXT
160 PRINT"(C/DN)START ADDRESS:-
                                       $****(C/LF)(C/LF)(C/LF)(C/LF)(C/LF)
 170 GOSUB540:S=A
 180 PRINT"(C/DN)END ADDRESS :- $****(C/LF)(C/LF)(C/LF)(C/LF)(C/LF)
 {C/LF}";:INPUTA$:PRINT
 190 GOSUB540:E=A
 200 FORP=STOE
 210 A=P:GOSUB450:REM ADDRESS
 220 PRINT" ";:A=PEEK(P):GOSUB480:PRINT" ";:I=PEEK(P):OP=AD(I)
 230 ONOPGOSUB510, 520, 520, 510, 530, 520, 520, 530, 530, 520, 520, 520, 530
 240 PRINT" ";MN$(I)" ";
 250 DNDPGDSUB270,280,290,300,310,320,330,340,350,360,370,380,400
 260 NEXTP: GOT0160
 270 PRINT:RETURN
 280 PRINT"#";:GOSUB490:P=P+1:PRINT:RETURN
 290 GOSUB490:P=P+1:PRINT:RETURN
 300 PRINT" A":RETURN
 310 GOSUB420:P=P+2:PRINT:RETURN
320 GDSUB490:P=P+1:PRINT",X":RETURN
330 GDSUB490:P=P+1:PRINT",Y":RETURN
340 GDSUB420:P=P+2:PRINT",X":RETURN
350 GDSUB420:P=P+2:PRINT",Y":RETURN
 360 PRINT"(";:GOSUB490:P=P+1:PRINT"),Y":RETURN
 370 PRINT"(";:GOSUB490:P=P+1:PRINT",X)":RETURN
 380 T=PEEK(P+1):Q=T+HI*(T>127)+2+P
 390 A=INT(Q/HI)*HI+((Q+(Q>SC)*UL)ANDFF):PRINT"$";:GOSUB450:P=P+1:
 400 PRINT" (";: GOSUB420
 410 PRINT") ":P=P+2:RETURN
 420 PRINT"$";
 430 A=PEEK(P+1)+HI*PEEK(P+2)
 440 REM HEX ADDRESS A
 450 HB=INT(A/HI):A=A-HI*HB
 460 PRINTH*(HB/16)H*(HBAND15);
 470 REM HEX BYTE A
 480 PRINTH# (A/16) H# (AAND15) ;: RETURN
 490 PRINT"$";
500 A=PEEK(P+1):GOT0480
510 PRINT"
                 "::RETURN
520 GOSUB500:PRINT"
                          ";:RETURN
530 GOSUB500:PRINT" ";:A=PEEK(P+2):GDT0480
540 IFASC(A#)=42THENEND
550 A=0:FORI=1T04:V=ASC(RIGHT$(A$,I))-48:V=V+(V>9)*7:A=A+V*(16*
(I-1)):NEXT:REIURN
1000 DATA 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
1010 DATA"BRK",1, "DRA",11,"???",1
1020 DATA"???",1,"???",1,"DRA",3
1030 DATA"ASL",3,"???",1,"DRA",3
1040 DATA"DRA",2,"ASL",4,"???",1
1050 DATA"???",1,"DRA",5,"ASL",5
```

1060	DATA"???".1."BPL".12."ORA".10
1070	DATA"???",1,"BPL",12,"ORA",10 DATA"???",1,"???",1,"???",1
1080	DATA"ORA" A "ASI " A "222" 1
1090	DATA"CI C" 1 "DRA" 9 "222" 1
1100	DATA#222# 1 #222# 1 #00A# 0
1110	DATA ARE 9 9 9000 1 9 700 F
1120	DATAMANDH 11 HOOOH 1 HOOOH 1
1130	DATA BATH 7 HANDE 7 HOOLE 7
1140	DATA 811", 3, "AND", 3, "RUL", 3
1150	DATA"???",1,"PLP",1,"AND",2
	DATA AND E "DOL " E "DOO" 4
1160	DATA"???",1,"???",1,"???",1 DATA"CAA",6,"ASL",6,"???",1 DATA"CLC",1,"UCRA",9,"???",1 DATA"ACLC",1,"UCRA",9,"???",1 DATA"ASL",8,"???",1,"JSR",5 DATA"ASL",8,"???",1,"JSR",5 DATA"AND",1,"???",1,"JSR",5 DATA"BIT",3,"AND",3,"ROL",3 DATA"???",1,"PLP",1,"AND",2 DATA"ROL",4,"???",1,"BIT",5 DATA"ROL",4,"???",1,"BIT",5 DATA"BMI",5,"ROL",5,"???",1 DATA"BMI",12,"AND",10,"???",1
1170	DATA BM1", 12, "AND", 10, "222", 1
1180	DATA"????",1,"???",1,"AND",6
1190	DATA"RUL",6,"???",1,"SEC",1
1200	DATA"AND",9,"???",1,"???",1
1210	DATA"???",1,"AND",8,"ROL",8
1220	DATA"???",1,"RTI",1,"EOR",11
1230	DATA"???",1,"???",1,"???",1
1240	DATA"EOR",3,"LSR",3,"???",1
1250	DATA"PHA",1,"EOR",2,"LSR",4
1260	DATA"???",1,"JMP",5,"EOR",5
1270	DATA"LSR",5,"???",1,"BVC",12
1280	DATA"BMI",12,"AND",10,"???",1 DATA"???",1,"???",1,"AND",6 DATA"ROL",6,"???",1,"SEC",1 DATA"AND",9,"???",1,"SEC",1 DATA"???",1,"AND",8,"ROL",8 DATA"???",1,"RTI",1,"EOR",11 DATA"???",1,"RTI",1,"EOR",11 DATA"???",1,"COR",3,"???",1 DATA"EOR",3,"LSR",3,"???",1 DATA"EOR",3,"LSR",3,"???",1 DATA"PHA",1,"EOR",2,"LSR",4 DATA"???",1,"JMP",5,"EOR",5 DATA"LSR",5,"???",1,"BVC",12 DATA"EOR",10,"???",1,"??",1 DATA"EOR",10,"???",1,"SC",6
1290	DATA "2??", 10, "2??", 1, "2??", 1 DATA "???", 1, "EOR", 6, "LSR", 6 DATA "???", 1, "CLI", 1, "EOR", 9 DATA "???", 1, "???", 1 DATA "EOR", 8, "LSR", 6, "???", 1 DATA "ETS", 1, "ADC", 1, "???", 1 DATA "RTS", 1, "ADC", 1, "ADC", 3 DATA "ROR", 3, "???", 1, "ADC", 3 DATA "ADC", 2, "ROR", 4, "???", 1 DATA "ADC", 2, "ROR", 4, "???", 1 DATA "ADC", 2, "ROR", 4, "???", 1
1300	DATA"???".1."CLI".1."EOR".9
1310	DATA"???".1."???".1."???".1
1320	DATA"FOR" .8. "LSR" .8. "222" 1
1330	DATA"RTS" 1 "ADC" 11 "222" 1
1340	DATA"222" 1 "222" 1 "ADC" 3
1350	DATA"POP" 7 "222" 1 "PLA" 1
1360	DATA NON 33, 222 11, FCH 11
1370	DATA"JMP", 13, "ADC", 5, "ROR", 5
1380	
1390	DATA"???",1,"BVS",12,"ADC",10
	DATA # 2227, 1, 72227, 1, 72227, 1
1400	DATA"????",1, "???",1, "???",1 DATA"ADC",6, "ROR",6, "???",1 DATA"SEI",1, "ADC",9, "???",1 DATA"SEI",1, "ADC",9, "???",1 DATA"ROR",8, "???",1, "ADC",8 DATA"ROR",8, "???",1, "???",1 DATA"STA",11, "???",1, "???",1 DATA"STA",3, "STA",3, "STX",3 DATA"???",1, "???",1
1410	DATA"SET",1,"ADC",9,"???",1
1420	DATA"???",1,"???",1,"ADC",8
1430	DATA"ROR",8,"???",1,"???",1
1440	DATA"STA",11,"???",1,"???",1
1450	DATA"STY",3,"STA",3,"STX",3
1460	DATA"???",1,"DEY",1,"???",1 DATA"TXA",1,"???",1,"STY",5 DATA"STA",5,"STX",5,"???",1
1470	DATA"TXA",1,"???",1,"STY",5
1480	DATA"STA",5,"STX",5,"???",1
1490	DATA"BCC",12,"STA",10,"???",1
1500	DATA"???",1,"STY",6,"STA",6
1510	DATA"STX",7,"???",1,"TYA",1
1520	DATA"STA",9,"TXS",1,"???",1
1530	DATA*BEC", 12, "STA", 10, "???", 1 DATA*BEC", 12, "STA", 10, "???", 1 DATA*???", 1, "STY", 6, "STA", 6 DATA*STX", 7, "???", 1, "TYA", 1 DATA*STA", 9, "TXS", 1, "???", 1 DATA*???", 1, "STA*, 6, "???", 1 DATA*???", 1, "STA*, 1, 0, "???", 1
1540	DATA"???",1,"LDY",2,"LDA",11 DATA"LDX",2,"???",1,"LDY",3 DATA"LDATA"LDY",2,"???",1,"LDY",3
1550	DATA"LDX",2,"???",1,"LDY",3
1560	DATA"LDA", 3, "LDX", 3, "???", 1
1570	DATA"TAY", 1, "LDA", 2, "TAX", 1
1580	DATA"???".1."LDY".5."LDA".5
1590	DATA"LDX".5."222".1."BCS" 12
1600	DATA"LDA",3,",1,",1,",1,",1," DATA"LDA",3,",1,"LDA",3,"???",1 DATA"TAY",1,"LDA",2,"TAX",1 DATA"???",1,"LDY",5,"LDA",5 DATA"LDX",5,"???",1,"BCS",12 DATA"LDA",10,"???",1,"???",1
1610	DATA"I DY" 6 "I DA" 6 "I DY" 7
1620	DATA"LDY",6,"LDA",6,"LDX",7 DATA"???",1,"CLV",1,"LDA",9 DATA"TSX",1,"???",1,"LDY",8
1620	DATA"TSY" 1 "222" 1 "LOV" 0
1000	Division gig the gig LDT go

Ł

1640	DATA"LDA",8,"LDX",9,"???",1
1650	DATA"CPY",2,"CMP",11,"???",1
1660	DATA"???",1,"CPY",3,"CMP",3
1670	DATA"DEC",3,"???",1,"INY",1
1680	DATA"CMP",2,"DEX",1,"???",1
1690	DATA"CPY",5,"CMP",5,"DEC",5
1700	DATA"???",1,"BNE",12,"CMP",10
1710	DATA"???",1,"???",1,"???",1
1720	DATA"CMP",6,"DEC",6,"???",1
1730	DATA"CLD",1,"CMP",9,"???",1
1740	DATA"???",1,"???",1,"CMP",8
1750	DATA"DEC",8,"???",1,"CPX",2
1760	DATA"SBC",11,"???",1,"???",1
1770	DATA"CPX",3,"SBC",3,"INC",3
1780	DATA"???",1,"INX",1,"SBC",2
1790	DATA"NOP",1,"???",1,"CPX",5
1800	DATA"SBC",5,"INC",5,"???",1
1810	DATA"BEQ",12,"SBC",10,"???",1
1820	DATA"???",1,"???",1,"SBC",6
1830	DATA"INC",6,"???",1,"SED",1
1840	DATA"SBC",9,"???",1,"???",1
1850	DATA"???",1,"SBC",8,"INC",8
1860	DATA"???",1

Program Description

- 100 150 Initialization; build tables
- 160 190 Prompt for starting and ending addresses for the disassembly and conversion to decimal.
- 200 260 FOR-NEXT loop for disassembly from starting to ending address. Line 220 gets the instruction code and the current address is output. Line 230 outputs the operands depending on the address mode. Line 240 outputs the instruction mnemonic. Line 250 displays the operand corresponding to the addressing mode. Line 260 ends the loop and jumps back to the input.
- 280 410 Output the operand as the address mode dictates.
- 420 530 Output hexadecimal forms of bytes and addresses.
- 540 550 Conversion of a hex number to decimal.
- 1000 1860 Tables containing the instruction mnemonics and addressing modes.

Variable Description

and the second se

MN\$(255)	Table of instruction words
AD(255)	Table of address modes
H\$(15)	Field with hex digits
FF	constant 255
HI	constant 256
UL	constant 65536
SC	constant 32767
A\$	string variable for hex number
S	start address
Е	end address
P	program counter
OP	addressing mode

12. Using a Machine Language Monitor

Here's another tool to aid in machine language development. The tool is called a monitor.

A monitor can be used to enter machine language programs. You can displays and changes the contents of memory locations and the registers. Additionally, you can save and load machine language programs to tape or diskette. You can execute machine language programs from it. If you end such a program with a BRK instruction, control is returned to the monitor and the contents of the registers are be displayed.

The following is an explaination of the commands available with the SUPERMON monitor. SUPERMON is a public domain monitor written by well know Commodore expert Jim Butterfield who has given us so many useful tools. SUPERMON is available free of charge from many sources including most local user groups. We have explained the use of SUPERMON beacuse it is so widely available.

SUPERMON is started by LOAD "SUPERMON",8 and activated with RUN. The monitor responds with:

..JIM BUTTERFIELD B* PC SR AC XR YR SP .; 9835 31 40 E6 00 F6

B indicates that the monitor was entered by "BRK".

The labels are as follows:

PC program counter SR status register AC accumulator XR x-register YR y-register SP stack pointer

The contents of those registers appear below the labels. You can change the contents of any register by moving the cursor over the old contents, overwriting it with the new value, and pressing the <RETURN> key. If you want to change the flags, the status register must be changed.

SUPERMON uses the period . as its prompt. When you see the period on the screen, SUPERMON is asking you to enter a command.

You can display the register contents at any time by entering R at the prompt:

.R

and pressing the <RETURN> key. The contents of the registers is displayed, just as above.

The next command displays and allows you to change the contents of memory. At the prompt, enter M followed by the first and last address you wish to see. The starting and ending addresses are entered as four-digit hexadecimal

numbers such as:

.M A0A0 A0AF .: A0A0 C4 46 4F D2 4E 45 58 D4 .: A0A8 44 41 54 C1 49 4E 50 55

SUPERMON displays the contents memory below your entry. You can interpret the output in the following way:

1

An address is displayed after the colon. This is the address of the first of eight following bytes. In this example, address \$A0A0 contains the value \$C4. Address \$A0A1 contains \$46, and so on. A total of eight bytes are displayed per line. SUPERMON displays as many lines as specified by the address range which you entered.

To change a single byte in memory, move the cursor over the old value, type in the new value, and press the <RETURN> key.

If you want to execute a program, use the instruction G. If the program starts at address \$CF20, enter

.G CF20

This begins the execution of a machine language program beginning at the specified address. First, however, the registers are be loaded with the values displayed with the R command. The last instruction in the machine language

program should be BRK which causes execution to return to the monitor when the program is done. When a BRK is executed, the register contents are then automatically displayed, as below:

> B* PC SR AC XR YR SP .; CF39 B3 8F 73 B0 F6

The B indicates that your program ended with a BRK instruction and that the monitor was entered by means of this BRK instruction. The program counter points to the byte immediately after the BRK instruction. If you have several BRK commands in your program, this information tells you at which point your program was stopped.

Knowing this, you can develop the following method for testing and debugging programs. Place BRK instructions at all of the important locations in the program so that the program stops at these points. Then check the register contents and data in memory. If the program has run properly up to this point, replace the BRK instruction with the original instruction and place a BRK instruction at the next critical location. This way you can test your program step by step until it runs to your satisfaction.

Loading and saving programs is accomplished through the use of the L and S commands. The following syntax is used:

.L "NAME",XX

To load a program type the name of the program in quotation marks followed by a comma separating it the device address given as a two-digit hex number area . If you want to load the program GRAPHIC from disk, for example, the instruction would look like this:

.L "GRAPHIC",08

If you want to load from cassette, you use the device address 01.

.L "GRAPHICS",01

The SAVE command works the same way. Because the computer must know the memory range to save, it is necessary to give a starting and an ending address. The ending address must be one greater than the last byte you want to save. The command looks like this:

.S "PROGRAM",08,7000,8000

It writes the memory range from \$7000 to \$7FFF to the disk under the name "PROGRAM". Here too the device address 01 can be entered in order to save to the cassette drive.

Another function of SUPERMON is the built-in disassembler. By entering D followed by an address range you can display machine language programs on the screen in disassembled

format. The format is the same as that used by the disassembler written earlier in BASIC. If you enter the following instruction:

.D B824 B82C

the following is displayed:

• ,	B824	20	EB	В7	JSR	\$B7EB
• •	B827	8A			TXA	
• •	B828	A0	00		LDY	#\$00
• ,	B82A	91	14		STA	(\$14),Y
• ,	B82C	60			RTS	

We disassembled a part of the BASIC interpreter which performs the POKE command.

Another useful command in SUPERMON allows one area of memory to be copied to another. Enter the starting and ending addresses of the area to be copied and the starting address of the destination area. The contents of the original area are left unchanged.

.T 6000 6FFF 3000

copies the area from \$6000 to \$6FFF to the addresses from \$3000 to \$3FFF.

Another useful function hunt command. With this command you

can search for specific values in memory. The results displayed are the addresses at which those values are found.

.H E000 EFFF 20 D2 FF

searches through the memory range from \$E000 to \$EFFF for the values \$20, \$D2, \$FF. This command will display a list of addresses at which these values were found. In this example we would see:

E10C

SUPERMON found the values 20 D2 FF at the area of memory starting at ElOC.

Another command fills memory with a particular value. With this you can fill a range of memory with constant values.

.F 8000 8FFF 00

fills the area from \$8000 to \$8FFF with zero bytes.

You can use the next command to assemble single lines of machine language. By entering the following:

.A 0800 LDA #\$FF

SUPERMON will assemble the machine language codes A9 FF into memory beginning at \$0800. This function makes it easy to enter short machine language program.

The last command exits from SUPERMON and returns you to the BASIC interpreter. Simply enter:

.X

and the interpreter will respond with READY. If you later wish to use the monitor again, you can return to it by entering

SYS 49152

а Тх 4 2

APPENDIX A -

Addressing Modes and Operation Codes

MNEMONIC				-ADD	RESS	ING I	10DE-			
*	А	#	ΖP	AB	ABX	ABY	ZPX	ZPY	,X)),Y
ADC	-	69	65	6 D	7 D	79	75	-	61	71
AND	-	29	25	2D	3D -	39	35	-	21	31
ASL	0 A 0	-	06	0 E	1 E	-	16	-	-	-
BIT	-	-	24	2C	-	-	-	-	-	-
CMP	-	C9	C5	CD	DD	D9	D5	-	C1	D1
CPX	-	E0	E4	EC	-	-	-	-	-	-
CPY	-	C0	C4	CC	-	-	-	-	-	-
DEC	-	-	C6	CE	DD	-	D6	-	-	-
EOR	-	49	45	4 D	5 D	59	55	-	41	51
INC	-		E6	ΕE	FD	-	F6	-	-	-
LDA	-	A9	A5	AD	BD	В9	B5	-	A1	B1
LDX	-	A2	A6	AE	-	BE	-	В6	-	-
LDY	-	A0	A4	AC	BC	-	В4	-	-	-
LSR	4A	-	46	4 E	5 E	-	56	-	-	-
ORA	-	09	05	0 D	1D	19	15	-	01	11
ROL	2A	-	26	2 E	3E	-	36	-	-	-
ROR	6A	-	66	6 E	7 E	-	76	-	-	-
SBC	-	E9	E5	ED	FD	F9	F5	-	El	F1
STA	-	-	85	8 D	9 D	99	95	-	81	91
STX	-	-	86	8 E	-	-	-	96	-	-
STY	-	-	84	8C	-	-	94	-	-	-

APPENDIX B

1

Grouped Instructions

Branch	BPL	BMI	BVC	BVS	всс	BCS	bne	BEO
Instr.	10	30	50	70	90	B0	d0	FO
Transfer Instr.	TXA 8A	TAX AA	TYA 98	TAY A8	TSX BA	TXS 9A		
Stack Instr.	PHP 08	PLP 28	РНА 48	PLA 68				
Jump	BRK	JSR	RTI	RTS	JMP	JMP	NOP	
Instr.	00	20	40	60	4C	6C	EA	
Flag	CLC	SEC	CLI	SEI	CLV	CLD	SED	
Instr.	18	38	58	78	B8	D8	F8	
Inc/Dec Instr.	DEY 88	INY C8	DEX CA	INX E8				

APPENDIX C

Conversio	n Tab	le	Decimal	-	Hexadecim	nal -	Binary
Decimal	Hex	Bina	ry		Decimal	Hex	Binary
0	00	00000	000		49	31	00110001
1	01	00000			50	32	00110010
2	02	00000			51	33	00110011
3	03	00000			52	34	00110100
4	04	00000			53	35	00110101
5	05	00000			54	36	00110110
6	06	00000			55	37	00110111
7	07	00000			56	38	00111000
8	08	00001			57	39	00111001
9	09	00001			58	3A	00111010
10	0A	00001			59	3B	00111011
11	0B	00001			60	3C	00111100
12	0C	00001			61	3 D	00111101
13	0 D	00001			62	3E	00111110
14	0E	00001			63	3F	00111111
15	0F	00001			64	40	01000000
16	10	00010			65	41	01000001
17	11	00010			66	42	01000010
18	12	00010			67	43	01000011
19	13	00010			68	43	01000100
20	14	00010			69	45	01000101
21	15	00010			70	46	01000110
22	16	00010			71	47	01000111
22	17	00010			72	48	01001000
23	18	00011			73	49	01001000
24	19	00011			74	49 4A	01001010
25					75	4B	01001010
	1A 1B	00011			76	4D 4C	01001101
27 28					78	40 4D	01001100
	1C	00011			78	4D 4E	01001110
29	lD	00011			79	4E 4F	01001111
30	lE	00011			80	50	01010000
31	1F	00011			81	51	01010001
32	20	00100			82	52	01010010
33	21 22	00100			83	53	01010011
34	22	00100			84	54	01010100
35					85	55	01010101
36	24	00100			86	56	01010110
37	25	00100			87	57	01010111
38	26	00100			88	58	01011000
39	27	00100			89	59	01011001
40 41	28 29	00101 00101			90	5A	01011010
					91	5B	01011011
42	2A 2B	00101 00101			92	5C	01011100
43					93	5D	01011101
44	2C	00101 00101			94	5E	01011110
45 46	2D 2E	00101			95	5F	01011111
					96	60	01100000
47	2F	00101			97	61	01100001
48	30	00110	0000		98	62	01100010
					50	02	01100010

Decimal	Нех	Binary	Decimal	Hex	Binary
99	63	01100011	148	94	10010100
100	64	01100100	149	95	10010101
101	65	01100101	150	96	10010110
102	66	01100110	151	97	10010111
103	67	01100111	152	98	10011000
104	68	01101000	153	99	10011001
105	69	01101001	154	9A	10011010
106	6A	01101010	155	9B	10011011
107	6B	01101011	156	9C	10011100
108	6C	01101100	157	9D	10011101
109	6D	01101101	158	9E	10011110
110	6E	01101110	159	9F	10011111
111	6F	01101111	160 161	AO Al	10100000
112	70 71	01110000			10100001 10100010
113 114	72	01110001 01110010	162 163	A2 A3	10100010
114	73	01110010	164	AJ A4	10100100
115	74	01110100	165	A5	10100101
117	75	01110101	165	A6	10100110
118	76	01110110	167	A7	10100111
119	77	01110111	168	A8	10101000
120	78	01111000	169	A9	10101001
121	79	01111001	170	AA	10101010
122	7A	01111010	171	AB	10101011
123	7B	01111011	172	AC	10101100
124	7C	01111100	173	AD	10101101
125	7 D	01111101	174	AE	10101110
126	7 E	01111110	175	AF	10101111
127	7F	01111111	176	в0	10110000
128	80	10000000	177	B1	10110001
129	81	10000001	178 179	B2	10110010
130	82	10000010		B3	10110011
131	83	10000011	180 181	В4 В5	10110100
132 133	84	10000100		в5 Вб	10110101 10110110
133	85	10000101	182 183	B7	10110111
134	86 87	10000110 10000111	183	B8	10111000
135	88	10001000	184	В9	10111001
130	89	10001000	185	BA	10111010
138	8A	10001010	187	BB	10111011
139	8B	10001011	188	BC	10111100
140	8C	10001100	189	BD	10111101
141	8 D	10001101	190	BE	10111110
142	8 E	10001110	191	BF	10111111
143	8 F	10001111	192	C0	11000000
144	90	10010000	193	C1	11000001
145	91	10010001	194	C2	11000010
146	92	10010010	195	C3 C4	11000011 11000100
147	93	10010011	196	64	11000100

Decimal 197	Hex C5	Binary 11000101	Decimal 227	Hex E3	Binary 11100011
198	C6	11000110	228	E4	11100100
199	C7	11000111	229	E5	11100101
200	C8	11001000	230	E6	11100110
201	Č9	11001001	231	E7	11100111
202	CA	11001010	232	E8	11101000
203	СВ	11001011	233	E9	11101001
204	CC	11001100	234	EA	11101010
205	CD	11001101	235	EB	11101011
206	CE	11001110	236	ĒČ	11101100
207	CF	11001111	237	ED	11101101
208	D0	11010000	238	EE	11101110
209	Dl	11010001	239	EF	11101111
210	D2	11010010	240	FO	11110000
211	D3	11010011	241	Fl	11110001
212	D4	11010100	242	F2	11110010
213	D5	11010101	243	F3	11110011
2Í4	D6	11010110	244	F4	11110100
215	D7	11010111	245	F5	11110101
216	D8	11011000	246	F6	11110110
217	D9	11011001	247	F7	11110111
218	DA	11011010	248	F8	11111000
219	DB	11011011	249	F9	11111001
220	DC	11011100	250	FA	11111010
221	DD	11011101	251	FB	11111011
222	DE	11011110	252	FC	11111100
223	DF	11011111	253	FD	11111101
224	EO	11100000	254	FE	11111110
225	El	11100001	255	FF	11111111
226	E2	11100010			

۲.

1	_	×	_	×	_	×	_	×	_		_	ž	_	×	-	×	
		-			-	-			(AB								
•									STX								
	AB	ABX	AB	ABX	æ	ABX	AB	ABX	AB	ABX	æ	ABX	æ	ABX	AB	ABX	
	ORA	ORA	AND	AND	EOR	EOR	ADC	ADC	STA	STA	LDA	LDA	CMP	CMD	SBC	SBC	
			AB		B		ONI		æ		BB	ABX	BB		AB		
0			BIT		AMD		dwΓ		STY		грγ	ГDY	СРΥ		CPX		
	A		A		¥		A										
4	ASL		ROL		LSR		ROR		TXA	TXS	TAX	TSX	DEX		NOP		
		АΒΥ	*	АВҮ		АВҮ	*	АВҮ		АВҮ	-	АВҮ	*	АВҮ		АВҮ	
	R	Ł	Q	g	ä	ő	Ы	В		Ł	DA	PA	ЧЪ	đ	ß	ß	
۰	0	0	×	۲	۵	ω	4	4		S	Ч	-	U	U	v,	S	
8	днд	CLC	PLP	SEC	PHA	CLI	PLA	SEI	DEY	TYA	TAΥ	CLV	ĬΝΥ	сгр	INX	SED	•
	42	Xd2	d 2	Xd2	ЧZ	Xd2	ЧZ	Xd2	ЧZ	ΥųΣ	42	ΣdΖ	ЧZ	Xd2	ЧZ	ΧdΖ	
	ASL	•••															
9	-			-													
		•••		•••				•••	ZP	• •						• •	
2	ORA	ORA	AND	AND	EOR	EOR	ADC	ADC	STA	STA	LDA	LDA	CMP	CMP	SBC	SBC	
			ΖЪ						42	ZΡX	ZΡ	XΗZ	2P		4 2		
_			BIT						STΥ	ΥTS	ĽD	ГDУ	СРУ		CPX		•
			~						••	••	-	_	Ī		Ī		
											XQ						
7	_	х	_	х	_		_	х	~	۲	_		_	х	~	х	
																Υ. (
-	ORA	ORA	AND	AND	EOR	EOR	ADC	ADC	STA	STA	LDA	LDA	GMD	CMP	SBC	SBC	
	¥	'n	SR SR	I	H	BVC	S	/S		2	20	S	2	ä	X	BEQ	
0	Ē	8	5	ñ	2	8	5	ā		ž	1	ž	Ü	B	ប	8	i

APPENDIX D Table of 6510 Instruction Codes

l

The left-most column gives the high nybble of the opcode while the top line gives the low nybble of the opcode. Example: EOR # has the operation code \$49.

The abbreviations for the addressing mode have the following meanings:

년 년 년

	Addressing	Instruct
Abbreviation	Mode	Lengt
A	accumulator	-
AB	absolute	m
ABX	absolute, Y indexed	m
АВҮ	absolute, X indexed	m
IND	indirect	m
dΖ	zero page	2
ZPX	zero page, X indexed	2
ZPY	zero page, Y indexed	2
*	immediate	2
(X,	X indexed, indirect	2
Υ, (indirect, Y indexed	2

APPENDIX D

APPENDIX E

OPERATION CODES AND FLAG SETTINGS

*					-	-	-	~
	Bit map 011xxx01	N	V	в	D	Ι	Z	C X
ADC AND	001XXX01	X X	х				X X	X
AND	000XXX10	X					X	х
BCC	10010000	~					~	~
BCS	10110000							
BEQ	11110000							
BIT	0010X100	М	м				х	
BMI	00110000	P1	ы				~	
BNE	10010000							
BPL	00010000							
BRK	00000000			1		1		
BVC	01010000			-		-		
BVS	01110000							
CLC	00011000							0
CLD	11011000				0			•
CLI	01011000				U U	0		
CLV	10111000		0			-		
CMP	110XXX01	х					х	х
CPX	1110XX00	Х					х	х
CPY	1100XX00	х					х	х
DEC	110XX110	Х					х	
DEX	11001010	х					х	
DEY	10001000	Х					х	
EOR	010XXX01	Х					х	
INC	000XX110	Х					х	
INX	11101000	Х					X	
INY	11001000	Х					х	
JMP	01X01100							
JSR	00100000							
LDA	101XXX01	х					X	
LDX	101XXX10	х					Х	
LDY	101XXX00	0					х	х
NOP	11101010							
ORA	000XXX01	х					Х	

214

}

ς.

*	Bit map	N	v	В	D	I	Z	C
PHA	01001000							
PHP	00001000							
PLA	01101000	Х					х	
PLP	00101000	Х	Х	Х	х	х	х	Х
ROL	001XXX10	Х					Х	Х
ROR	011XXX10	х					х	Х
RTI	01000000	Х	х	х	х	х	х	Х
RTS	01100000							
SBC	111XXX01	х	х				х	Х
SEC	00111000							1
SED	11111000				1			
SEI	01111000					1		
STA	100XXX01							
STX	100XX110							
STY	100XX100							
TAX	10101010	Х					х	
TAY	10101000	Х					Х	
TSX	10111010	Х					Х	
TXA	10001010	Х					X	
TXS	10011010							
TYA	10011000	х					х	

If the bit map of a instruction contains one or more Xs, these bits are dependent on the address mode. An X in a flag column indicates that that flag is affected by the instruction. A 0 or 1 means that the flag is cleared or set, respectively. If no entry is given under a particular flag, the instruction in question does not affect that flag.

APPENDIX F

OPTIONAL DISKETTE ORDERING INFORMATION

The listings in this book for the LEA Assembler, 6510 Single-Step Simulator, Disassembler and SUPERMON monitor are available on a ready to run 1541 Format Diskette.

By purchasing this diskette, you can eliminate typing these programs into your Commodore 64 from the listings.

The programs on the diskette have been fully tested and are available for \$14.95 + \$2.00 (\$5.00 foreign) postage and handling charge.

To order, send name, address and a check, money order or credit card information to:

ABACUS SOFTWARE P.O. BOX 7211 GRAND RAPIDS, MI 49510

For fast service, order by phone - 616 / 241-5510.

Be sure to ask for the "Optional Diskette for the Machine Language Book for the Commodore 64"

XREF-64 BASIC CROSS REFERENCE

This tool allows you to locate those hard-to-find variables in your programs. Cross-references all tokens (key words), variables and constants in sorted order. You can even add you own tokens from other software such as ULTRABASIC or VICTREE. Listings to screen or all ASCII printers. DISK \$17.95

SYNTHY-64

This is renowned as the linest music synthesizers available at any price. Others may have a lot of onscreen fills, but SYNTHY-64 makes music better than them all. Nothing comes close to the performance of this package includes manual with lutorial, sample music

DISK \$27.95 TAPE \$24.95

ULTRABASIC-64

This package adds 50 powerful commands (many found in VIDEO BASIC, above) - HIRES, MULTI, DOT, DRAW, CIRCLE, BOX, FILL, JOY, TURTLE, MOVE, TURN, HARD, SOUND, SPRITE, ROTATE, more All commands are easy to use. Includes manual with two-part tuloral and demo. DISK 327-95 TAPE 524 95

CHARTPAK-64

This finest charting package draws pie, bar and line charts and graphs from your data or DIF, Multiplan and Busicalc files. Charts are drawn in any of 2 formats. Change format and build another chart immediately. Hardcopy to MPS801, Epson, Okidata, Prowriter. Includes manual and tutorial.

DISK \$42.95

CHARTPLOT-64

Same as CHARTPACK-64 for highest quality output to most popular pen plotters. DISK \$84.95

DEALER INQUIRIES ARE INVITED

FREE CATALOG Ask for a listing of other Abacus Software for Commodore-64 or Vic-20 DISTRIBUTIONS

Great Britain:	Belguim:	France:	New Zealand:
ADAMSOFT	Inter. Services	MICRO APPLICATION	VISCOUNT ELECTRONICS
18 Norwich Ave.	AVGullaume 30	147 Avenue Paul-Doumer	306-308 Church Street
Rochdale, Lancs.	Brussel 1160, Belguim	Ruetil Malmaison, France	Palmerston North
706-524304	2-860-1447	1732-9254	63-86-696
West Germany:	Sweden:	Australia:	
DATA BECKER	TIAL TRADING	CW ELECTRONICS	
Merowingerstr 30	PO 516	416 Logan Road	
4000 Dusseldorf	34300 Aimhult	Brisbane, Queens	
0211/312085	476-12304	07-397-0808	

Commodore 64 is a reg. T.M. of Commodore Business Machines

CADPAK-64

This advanced design package has outstanding features two Hires screens, draw LINES, RAYS, CIRCLES, BOXEs, treehand DRAW, FILL with patterns; COPV areas; SAVE/RECALL pictures, define and use intricate OBJECTS; insert text on screen; UNDO last function. Requires high quality tightpen. We recommend McPen. Includes manual with tutorial. DISK \$49.95 MCPen lightpen \$49.95 MCPen \$49.95

MASTER 64

VIDEO BASIC-64

This professional application development package adds 100 powerful commands to BASIC including fast ISAM indexed files; simplified yet sophisticated screen and printer management; programmer's aid; BASIC 4.0 commands; 22-digit arithmetic; machine language monitor. Runtime package for royally-free distribution of your programs. Includes 150pp. manual.

DISK \$84.95

This superb graphics and sound development package lets you write software for distribution without royalties. Has hires, multicolor, sprite and furtle graphics; audio commands for simple or complex music and sound effects, two sizes of hardcopy to most dot matrix printers; game features such as sprite collision detection, lightpen, game paddle; memory management for multiple graphics screens, screen copy, etc.

DISK \$59.95

TAS-64 FOR SERIOUS INVESTORS

This sophisticated charting system plots more than 15 technical indicators on split screen, moving averages; oscillators; trading brands; least squares; trend lines; superimpose graphs; live volume indicators; relative strength; volumes; more. Online data collection DJNR/S or Warner; 175pp; manual. Tutoral DISK 584.95

Abacus Software

P.O. BOX 7211 GRAND RAPIDS. MICH. 49510 For postage & handling, add \$4.00 (U.S. and Canada), add \$8.00 for foreign. Make payment in U.S. dollars by check, money order or charge card. (Michigan Residents add 4% sales tax).

FOR QUICK SERVICE PHONE 616-241-5510

FOR COMMODOR HACK RS (The ultimate source **M**A for Commodore-64 **Computer information**

OTHER BOOKS AVAILABLE SOON

1

Ye

THE ANATOMY OF THE C-64 is the insider's guide to the lesser known features of the Commodore 64 Includes chapters on graphics. sound synthesis, input/output control, sample programs using the kernal routines, more. For those who need to know, it includes the complete disassembled and documented ROM listings

ISBN-0-916439-00-3 300nn \$19.95

THE ANATOMY OF THE 1541 DISK DRIVE

unravels the mysteries of using the misuriderstood disk drive Details the use of program sequential, relative and direct access files. Include many sample programs FILE PROTECT. DIRECTORY. DISK MONITUR, BACKUP, MERGE, COPY, others, Describes internals of DOS with completely disaddembled and commented listings of the 1541 BOMS

ISBN-0-916439-01-1 320pp \$19.95

MACHINE LANGUAGE FOR C-64 is aimed at those who want to progress beyond BASIC Write laster, more memory efficient programs in machine language Test is specifically geared to Commodore 64 Learns all 6510 instructions Includes listings for 3 full length programs ASSEMBLER DISASSEMBLER and amazing 6510 SIMULATOR so you can "see" the opera tion of the 64 ISBN-0-916439-02-X 200pp \$14.95

TRICKS & TIPS FOR THE C-64 is a collection of easy-to-use programming techniques for the '64. A perfect companion for those who have run up against those hard to solve programming problems Covers advanced graphics, easy data input, BASIC

enhancements, CP/M cartridge on the '64. POKEs, user defined character sets joystick/mouse simulation, transferring data between comuters, more. A treasure chest ISBN-0-916439-03-8 250pp \$19.95

GRAPHICS BOOK FOR THE C-64

takes you from the fundamentals of graphic to advanced topics such as computer aided design. Shows you how to program new character sets. move sprites. draw in HIRES and MULTICOLOR, use a lightpen handle IROs, do 3D graphics, projections, curves and animation. Includes dozens of samples

ISBN-0-916439-05-4 28000 \$19.95

ADVANCED MACHINE LANGUAGE FOR THE C-64

gives you an intensive treatment of the powerful '64 features Author Lothar Englisch delves into areas such as interrupts, the video controller, the timer, the real time clock parallel and serial I/O, extending BASIC and tips and tricks from machine language, more

ISBN-0-916439-06-2 20000 \$14.95

IDEAS FOR USE ON YOUR C-64 is for those who wonder what you can do with your '64 It is written for the novice and presents dozens of program listing the many, many uses for your computer Themes include auto expenses, electronic calculator, recipe file, stock lists, construction cost estimator, personal health record diet planner, store window advertising, computer poetry, party invitations and more ISBN-0-916439-07-0 20000 \$12.95

PRINTER BOOK FOR THE C-64 finally simplifies your understanding of the 1525. MPS/801, 1520, 1526 and Epson compatible printers Packed with examples and utility programs, you'll learn how to make hardcopy of text and graphics, use secondary addresses, plot in 3-D, and much more. Includes commented listing of MPS 801 ROMs. ISBN-0-916439-08-9 350pp. \$19.95

SCIENCE/ENGINEERING **ON THE C-64**

is an introduction to the world of computers in science. Describes variable types, computational accuracy, various sort alogrithms. Topics include linear and nonlinear regression, CHI-square distribution, Fourier analysis, matrix calculations, more Programs from chemistry, physics, biology, astronomy and electronics Includes many program listings

ISBN-0-916439-09-7 250pp \$19.95

CASSETTE BOOK FOR THE C-64

(or Vic 20) contains all the information you need to know about using and programming the Commodore Datasette Includes many example programs Also contains a new operating system for fast loading, saving and finding of files

ISBN-0-916439-04-6 180pp. \$12.95

DEALER INQUIRIES ARE INVITED

IN CANADA CONTACT:

The Book Centre, 1140 Beaulac Street Montreal, Quebec H4R1R8 Phone: (514) 322-4154

AVAILABLE AT COMPUTER STORES, OR WRITE:

For postage & handling, add \$4.00 (U.S. and Canada), add \$6.00 for foreign. Make payment in U.S. dollars by check, money order of charge card. (Michigan Residents add 4% sales tax.) VISA

FOR QUICK SERVICE PHONE (616) 241-5510 re 64 is a reg. T.M. of Commodore Bus as Mach

THE MACHINE LANGUAGE BOOK OF THE COMMODORE 64

This introductory guide to machine language programing is written specifically for the Commodore 64 owner. You'll learn: to use all of the 6510 instructions; to program **high resolution graphics**; to perform input and output operations and more with plenty of easy-to-understand examples.

Included are listings for a working ASSEMBLER, DIS-ASSEMBLER and 6510 Single Step Simulator.

ISBN 0-916439-02-X

P.O. BOX 7211 GRAND RAPIDS, MICH. 49510 PHONE 616-241-5510